## The kernel average for two convex functions and its application to the extension and representation of monotone operators

HTML articles powered by AMS MathViewer

- by Heinz H. Bauschke and Xianfu Wang PDF
- Trans. Amer. Math. Soc.
**361**(2009), 5947-5965 Request permission

## Abstract:

We provide and analyze an average for two convex functions, based on a kernel function. It covers several known averages such as the arithmetic average, epigraphical average, and the proximal average. When applied to the Fitzpatrick function and the conjugate of Fitzpatrick function associated with a monotone operator, our average produces an autoconjugate (also known as selfdual Lagrangian) which can be used for finding an explicit maximal monotone extension of the given monotone operator. This completely settles one of the open problems posed by Fitzpatrick in the setting of reflexive Banach spaces.## References

- Sedi Bartz, Heinz H. Bauschke, Jonathan M. Borwein, Simeon Reich, and Xianfu Wang,
*Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative*, Nonlinear Anal.**66**(2007), no. 5, 1198–1223. MR**2286629**, DOI 10.1016/j.na.2006.01.013 - Heinz H. Bauschke,
*Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings*, Proc. Amer. Math. Soc.**135**(2007), no. 1, 135–139. MR**2280182**, DOI 10.1090/S0002-9939-06-08770-3 - Heinz H. Bauschke, Jonathan M. Borwein, and Xianfu Wang,
*Fitzpatrick functions and continuous linear monotone operators*, SIAM J. Optim.**18**(2007), no. 3, 789–809. MR**2345969**, DOI 10.1137/060655468 - Heinz H. Bauschke, Rafal Goebel, Yves Lucet, and Xianfu Wang,
*The proximal average: basic theory*, SIAM J. Optim.**19**(2008), no. 2, 766–785. MR**2425040**, DOI 10.1137/070687542 - H. H. Bauschke, Y. Lucet, and X. Wang, “Primal-dual symmetric antiderivatives for cyclically monotone operators”,
*SIAM Journal on Control and Optimization*, vol. 46, pp. 2031–2051, 2007. - Heinz H. Bauschke, Eva Matoušková, and Simeon Reich,
*Projection and proximal point methods: convergence results and counterexamples*, Nonlinear Anal.**56**(2004), no. 5, 715–738. MR**2036787**, DOI 10.1016/j.na.2003.10.010 - Heinz H. Bauschke, D. Alexander McLaren, and Hristo S. Sendov,
*Fitzpatrick functions: inequalities, examples, and remarks on a problem by S. Fitzpatrick*, J. Convex Anal.**13**(2006), no. 3-4, 499–523. MR**2291550** - Jonathan M. Borwein,
*Maximal monotonicity via convex analysis*, J. Convex Anal.**13**(2006), no. 3-4, 561–586. MR**2291552** - R. S. Burachik and S. Fitzpatrick,
*On a family of convex functions associated to subdifferentials*, J. Nonlinear Convex Anal.**6**(2005), no. 1, 165–171. MR**2138108** - Simon Fitzpatrick,
*Representing monotone operators by convex functions*, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, Austral. Nat. Univ., Canberra, 1988, pp. 59–65. MR**1009594** - N. Ghoussoub, “Maximal monotone operators are selfdual vector fields and vice-versa”,
*Proceedings of the American Mathematical Society*, to appear. - J.-E. Martínez-Legaz and B. F. Svaiter,
*Monotone operators representable by l.s.c. convex functions*, Set-Valued Anal.**13**(2005), no. 1, 21–46. MR**2128696**, DOI 10.1007/s11228-004-4170-4 - Juan-Enrique Martinez-Legaz and Michel Théra,
*A convex representation of maximal monotone operators*, J. Nonlinear Convex Anal.**2**(2001), no. 2, 243–247. Special issue for Professor Ky Fan. MR**1848704** - Jean-Paul Penot,
*Autoconjugate functions and representations of monotone operators*, Bull. Austral. Math. Soc.**67**(2003), no. 2, 277–284. MR**1972717**, DOI 10.1017/S0004972700033748 - Jean-Paul Penot,
*The relevance of convex analysis for the study of monotonicity*, Nonlinear Anal.**58**(2004), no. 7-8, 855–871. MR**2086060**, DOI 10.1016/j.na.2004.05.018 - Jean-Paul Penot and Constantin Zălinescu,
*Some problems about the representation of monotone operators by convex functions*, ANZIAM J.**47**(2005), no. 1, 1–20. MR**2159848**, DOI 10.1017/S1446181100009731 - Simeon Reich and Stephen Simons,
*Fenchel duality, Fitzpatrick functions and the Kirszbraun-Valentine extension theorem*, Proc. Amer. Math. Soc.**133**(2005), no. 9, 2657–2660. MR**2146211**, DOI 10.1090/S0002-9939-05-07983-9 - R. Tyrrell Rockafellar,
*Convex analysis*, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR**0274683** - R. Tyrrell Rockafellar and Roger J.-B. Wets,
*Variational analysis*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR**1491362**, DOI 10.1007/978-3-642-02431-3 - Stephen Simons,
*Minimax and monotonicity*, Lecture Notes in Mathematics, vol. 1693, Springer-Verlag, Berlin, 1998. MR**1723737**, DOI 10.1007/BFb0093633 - S. Simons and C. Zălinescu,
*A new proof for Rockafellar’s characterization of maximal monotone operators*, Proc. Amer. Math. Soc.**132**(2004), no. 10, 2969–2972. MR**2063117**, DOI 10.1090/S0002-9939-04-07462-3 - S. Simons and C. Zălinescu,
*Fenchel duality, Fitzpatrick functions and maximal monotonicity*, J. Nonlinear Convex Anal.**6**(2005), no. 1, 1–22. MR**2138099** - B. F. Svaiter,
*Fixed points in the family of convex representations of a maximal monotone operator*, Proc. Amer. Math. Soc.**131**(2003), no. 12, 3851–3859. MR**1999934**, DOI 10.1090/S0002-9939-03-07083-7 - C. Zălinescu,
*Convex analysis in general vector spaces*, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR**1921556**, DOI 10.1142/9789812777096

## Additional Information

**Heinz H. Bauschke**- Affiliation: Department of Mathematics, Irving K. Barber School, UBC Okanagan, Kelowna, British Columbia, Canada V1V 1V7
- MR Author ID: 334652
- Email: heinz.bauschke@ubc.ca
**Xianfu Wang**- Affiliation: Department of Mathematics, Irving K. Barber School, UBC Okanagan, Kelowna, British Columbia, Canada V1V 1V7
- MR Author ID: 601305
- Email: shawn.wang@ubc.ca
- Received by editor(s): May 10, 2007
- Received by editor(s) in revised form: October 2, 2007
- Published electronically: April 17, 2009
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**361**(2009), 5947-5965 - MSC (2000): Primary 52A41, 47N10; Secondary 47H05
- DOI: https://doi.org/10.1090/S0002-9947-09-04698-4
- MathSciNet review: 2529920