On the long time behavior of second order differential equations with asymptotically small dissipation
HTML articles powered by AMS MathViewer
- by Alexandre Cabot, Hans Engler and Sébastien Gadat PDF
- Trans. Amer. Math. Soc. 361 (2009), 5983-6017 Request permission
Abstract:
We investigate the asymptotic properties as $t\to \infty$ of the following differential equation in the Hilbert space $H$: \begin{equation*}(\mathcal {S})\qquad \qquad \qquad \ddot {x}(t)+a(t)\dot {x}(t)+ \nabla G(x(t))=0, \quad t\geq 0,\qquad \qquad \qquad \qquad \quad \end{equation*} where the map $a:\mathbb {R}_+\to \mathbb {R}_+$ is nonincreasing and the potential $G:H\to \mathbb {R}$ is of class $\mathcal {C}^1$. If the coefficient $a(t)$ is constant and positive, we recover the so-called “Heavy Ball with Friction” system. On the other hand, when $a(t)=1/(t+1)$ we obtain the trajectories associated to some averaged gradient system. Our analysis is mainly based on the existence of some suitable energy function. When the function $G$ is convex, the condition $\int _0^\infty a(t) dt =\infty$ guarantees that the energy function converges toward its minimum. The more stringent condition $\int _0^{\infty } e^{-\int _0^t a(s) ds}dt<\infty$ is necessary to obtain the convergence of the trajectories of $(\mathcal {S})$ toward some minimum point of $G$. In the one-dimensional setting, a precise description of the convergence of solutions is given for a general nonconvex function $G$. We show that in this case the set of initial conditions for which solutions converge to a local minimum is open and dense.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
- Felipe Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim. 38 (2000), no. 4, 1102–1119. MR 1760062, DOI 10.1137/S0363012998335802
- H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method, J. Differential Equations 128 (1996), no. 2, 519–540. MR 1398330, DOI 10.1006/jdeq.1996.0104
- Hedy Attouch and Marc-Olivier Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria, J. Differential Equations 179 (2002), no. 1, 278–310. MR 1883745, DOI 10.1006/jdeq.2001.4034
- H. Attouch, X. Goudou, and P. Redont, The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math. 2 (2000), no. 1, 1–34. MR 1753136, DOI 10.1142/S0219199700000025
- Haïm Brézis, Asymptotic behavior of some evolution systems, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York-London, 1978, pp. 141–154. MR 513816
- A. Cabot, Inertial gradient-like dynamical system controlled by a stabilizing term, J. Optim. Theory Appl. 120 (2004), no. 2, 275–303. MR 2044898, DOI 10.1023/B:JOTA.0000015685.21638.8d
- S. Gadat, L. Younes, A stochastic algorithm for feature selection in pattern recognition, J. Mach. Learn. Res., 8 (2007), 509-547.
- Xavier Goudou and Julien Munier, Asymptotic behavior of solutions of a gradient-like integrodifferential Volterra inclusion, Adv. Math. Sci. Appl. 15 (2005), no. 2, 509–525. MR 2198574
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Alain Haraux, Systèmes dynamiques dissipatifs et applications, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 17, Masson, Paris, 1991 (French). MR 1084372
- A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations 144 (1998), no. 2, 313–320. MR 1616968, DOI 10.1006/jdeq.1997.3393
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
- Stanislaus Maier-Paape, Convergence for radially symmetric solutions of quasilinear elliptic equations is generic, Math. Ann. 311 (1998), no. 1, 177–197. MR 1624291, DOI 10.1007/s002080050183
- John W. Miles, On a nonlinear Bessel equation, SIAM J. Appl. Math. 42 (1982), no. 1, 109–112. MR 646752, DOI 10.1137/0142009
- Wei-Ming Ni, Qualitative properties of solutions to elliptic problems, Stationary partial differential equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 157–233. MR 2103689, DOI 10.1016/S1874-5733(04)80005-6
- Herbert Robbins and Sutton Monro, A stochastic approximation method, Ann. Math. Statistics 22 (1951), 400–407. MR 42668, DOI 10.1214/aoms/1177729586
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- Lionel Thibault, Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM J. Control Optim. 35 (1997), no. 4, 1434–1444. MR 1453305, DOI 10.1137/S0363012995287714
Additional Information
- Alexandre Cabot
- Affiliation: Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- Email: acabot@math.univ-montp2.fr
- Hans Engler
- Affiliation: Department of Mathematics, Georgetown University, Box 571233, Washington, DC 20057
- MR Author ID: 63565
- Email: engler@georgetown.edu
- Sébastien Gadat
- Affiliation: Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
- Email: Sebastien.Gadat@math.ups-tlse.fr
- Received by editor(s): October 22, 2007
- Published electronically: June 9, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 5983-6017
- MSC (2000): Primary 34G20, 34A12, 34D05
- DOI: https://doi.org/10.1090/S0002-9947-09-04785-0
- MathSciNet review: 2529922