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OPTIMAL TRANSPORTATION

UNDER NONHOLONOMIC CONSTRAINTS

ANDREI AGRACHEV AND PAUL LEE

Abstract. We study Monge’s optimal transportation problem, where the cost
is given by an optimal control cost. We prove the existence and uniqueness of
an optimal map under certain regularity conditions on the Lagrangian, abso-
lute continuity of the measures with respect to Lebesgue, and most importantly
the absence of sharp abnormal minimizers. In particular, this result is appli-
cable in the case of subriemannian manifolds with a 2-generating distribution
and cost given by d2, where d is the subriemannian distance. Also, we discuss
some properties of the optimal plan when abnormal minimizers are present.
Finally, we consider some examples of displacement interpolation in the case
of the Grushin plane.

1. Introduction

Let (X , µ), (Y , ν) be probability spaces and let c : X × Y → R ∪ {+∞} be
a fixed measurable function. The Monge optimal transportation problem is the
minimization of the following functional:∫

X
c(x, φ(x)) dµ

over all the Borel maps φ : X → Y which push forward µ to ν: φ∗µ = ν. Maps φ
which achieve the infimum above are called optimal maps. In this paper, we will
only consider the case when X = Y = M is a manifold.

In 1942, Kantorovich studied a relaxed version of Monge’s problem in his famous
paper [15]. However, a huge step toward solving the original problem was not
achieved until a decade ago by Brenier. In [8], Brenier proved the existence and
uniqueness of an optimal map in the case where M = R

n and the cost function
c is given by c(x, y) = |x − y|2. Later, this is generalized, by McCann [18], to
the case of a closed Riemannian manifold M with the cost given by the square
of the Riemannian distance c(x, y) = d2(x, y). Recently, Bernard and Buffoni [7]
generalized this further to the case where the cost c is the action associated to a
Lagrangian function L : TM → R on a compact manifold M . More precisely, the
cost is given by

(1) c(x, y) = inf
x(0)=x,x(1)=y

∫ 1

0

L(x(t), ẋ(t))dt,
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where the infimum is taken over all curves joining the points x and y, and the
Lagrangian L is fibrewise strictly convex with superlinear growth.

In this paper, we consider costs similar to (1). However, instead of minimizing
among all curves, the infimum is taken over a subcollection of curves, called ad-
missible paths. These paths are given by a control system and the corresponding
cost function is called the optimal control cost. More precisely, a control system
is a smooth fiber-preserving map F of a locally trivial bundle P → M over the
manifold M into its tangent bundle TM . If the fibres of the bundle P → M are
diffeomorphic to a set U , then the map F : P → TM can be written locally as
F : (x, u) �→ F (x, u), where x is in the manifold M and u is in the set U . We assume
that U is a closed subset of a Euclidean space. Admissible controls are measurable
bounded maps from [0, 1] to U , and admissible paths are Lipschitz curves which
satisfy the equation

(2) ẋ(t) = F (x(t), u(t)),

where u(·) is an admissible control. Let L : M × U → R be a Lagrangian. Then
the corresponding cost c is given by

(3) inf
(x(·),u(·))

∫ 1

0

L(x(t), u(t)) dt,

where the infimum is taken over all admissible pairs (x(·), u(·)) : [0, 1] → M × U
such that x(0) = x, y(0) = y.

In the interesting cases, the dimension of U is smaller than that of M and,
nevertheless, any two points of M can be connected by an optimal admissible
path. In other words, the control system works as a nonholonomic constraint.
The shortage of admissible velocities does not allow us to recover an optimal path
from its initial point and initial velocity and the Euler–Lagrange description of
the extremals does not work well. On the other hand, the Hamiltonian approach
remains efficient thanks to the Pontryagin maximum principle. Another difficulty
is the appearance of so-called abnormal extremals (singularities of the space of
admissible paths) which we are obliged to fight with.

In sections 2 and 3, we will recall some basic notions in optimal control theory
and the theory of optimal mass transportation which are necessary for this paper.

In section 4, by using the arguments in the theory of optimal mass transportation
and the Pontryagin maximum principle in optimal control theory, we show the
existence and uniqueness of an optimal map under some regularity assumptions
(Theorem 4.1). All these conditions are mild except the Lipschitz continuity of the
cost function. However, this is well known in all of the above cases mentioned. So,
the theorem generalizes the work in [8, 18, 7].

In section 5, we study the Lipschitz continuity of the cost function. If abnormal
minimizers are absent, then the cost is not only Lipschitz but even semi-concave
(see [9]). Unfortunately, abnormal minimizers are unavoidable in many interesting
problems and, in particular, in all subriemannian problems. It happens, however,
that not all abnormal minimizers are dangerous. To keep the Lipschitz property of
the cost (though not the semi-concavity), it is sufficient that the, so-called, sharp
abnormal minimizers are absent. Sharp paths are essentially singularities of the
space of admissible paths whose neighborhoods in the second order approximations
are contained in quadrics with a finite Morse index. Geometric control theory pro-
vides simple effective conditions of the sharpness (see, for instance, [4, 6]). These
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conditions allow us to prove Lipschitz continuity for a large class of optimal con-
trol costs, hence proving the existence and uniqueness of an optimal map of the
corresponding Monge problem (Theorem 6.3).

In section 6, we apply the above results to some subriemannian manifolds, where
the cost function is given by the square of the subriemannian distance (see section
6 for the basic notions in subriemannian geometry). In the case of a subrieman-
nian manifold, all the mild regularity assumptions are satisfied. Using the result
in [6] mentioned above (Proposition 5.2), Lipschitz continuity of the cost can be
easily proven in the case of a step 2 distribution (Corollary 6.2), hence proving
existence and uniqueness of an optimal map (Theorem 6.3). This generalizes the
corresponding result by Ambrosio and Rigot [1] on the Heisenberg group.

In sections 7 and 8, we prove certain properties of the optimal plan when abnor-
mal minimizers are present. In section 7, we consider flows whose trajectories are
strictly abnormal minimizers. We show that these flows cannot be an optimal plan
for all “nice” initial measures if the cost is continuous. On the contrary, in section
8, we show that these flows are indeed optimal for an important class of problems
with discontinuous costs.

In section 9, we study two examples on the Grushin plane for which the results
in sections 3 and 4 apply.

2. Elementary optimal control theory

In this section, we recall some notions from optimal control theory. See [4, 13, 14]
for the details. Let M be a smooth manifold and let U be a closed subset in R

m

which is called the control set. Let F : M × U → TM be a Lipschitz continuous
function such that Fu := F (·, u) : M → TM are smooth vector fields for each
point u in the control set U . Assume that the function (x, u) �→ ∂

∂xF (x, u) is
continuous. Curves u(·) : [0, 1] → U in the control set U which are locally bounded
and measurable (i.e. u(·) ∈ L∞([0, 1], U)) are called admissible controls.

A control system is the following ordinary differential equation with parameters
varying over all admissible controls:

(4) ẋ(t) = F (x(t), u(t)).

The solutions x(t) to the above control system are called admissible paths and
(x(t), u(t)) are called admissible pairs.

By the classical theory of ordinary differential equations, a unique solution to
the system (4) exists locally for almost all time t. Moreover, the resulting local flow
is smooth in the space variable x and Lipschitz in the time variable t. The control
system is complete if the flows of all control vector fields exist globally.

Let x0 and x1 be two points on the manifold M . Denote by Cx0
the set of all

admissible pairs (x(·), u(·)) for which the corresponding admissible paths x(·) start
at the point x0, and denote by Cx1

x0
those pairs in Cx0

whose admissible paths end
at x1. A control system is called controllable if the set Cx1

x0
is always nonempty for

any pair of points x0 and x1 on the manifold.
Let L : M × U → R be a smooth function, called a Lagrangian, and define the

cost function corresponding to this Lagrangian as follows:

(5) c(x0, x1) =

{
inf

(x(·),u(·))∈C
x1
x0

∫ 1

0
L(x(t), u(t)) dt if Cx1

x0
�= ∅,

+∞ otherwise.
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The cost function defined above is said to be complete if given any pair of points
(x0, x1), there exists an admissible pair which achieves the infimum above and the
corresponding admissible path starts from x0 and ends at x1.

Remark 2.1. The infimum of the problem in (5) can be equivalently characterized
by taking the infimum over all admissible controls u(·) such that the corresponding
admissible paths start at the point x1, end at the point x0 of the manifold and
satisfy the following control system:

ẋ(s) = −F (x(s), u(s)).

This point will become important for later discussion.

Consider the following minimization problem, commonly known as the Bolza
problem:

Problem 2.2. Find minimizers for

inf
(x(·),u(·))∈Cx0

∫ 1

0

L(x(s), u(s)) ds− f(x(1)).

Let π : T ∗M → M be the cotangent bundle projection. For each point u in the
control set U , define the corresponding Hamiltonian function Hu : T ∗M → R by

Hu(px) = px(F (x, u)) + L(x, u).

If H : T ∗M → R is a function on the cotangent bundle, we denote its Hamiltonian

vector field by
−→
H . Also, recall that α is in the sub-differential d−fx of f at x if

there is a C1 function φ which satisfies dφx = α and touches f from below at x.
By touching f from below at x, we mean that φ ≤ f and φ(x) = f(x). α is in the
super-differential d+fx of f at x if −α is in the sub-differential of −f at x. It is not
hard to see that f is differentiable at x if and only if both the super-differential and
the sub-differential of f at x are nonempty, and d+fx = d−fx = {dfx} in this case.
See for instance [10, 24] for a detailed discussion on generalized differentials. Next,
we present an elementary version of the Pontryagin maximum principle which we
prove in the appendix for the convenience of the reader.

Theorem 2.3 (Pontryagin Maximum Principle for Bolza Problem). Let (x̃(·), ũ(·))
be an admissible pair which achieves the infimum in Problem 2.2. Assume that the
function f in Problem 2.2 is sub-differentiable at the point x̃(1). Then, for each α
in the sub-differential d−fx̃(1) of f , there exists a Lipschitz path p̃ : [0, 1] → T ∗M
which satisfies the following for almost all time t in the interval [0, 1]:

(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π(p̃(t)) = x̃(t),
p̃(1) = −α,
˙̃p(t) =

−→
H ũ(t)(p̃(t)),

Hũ(t)(p̃(t)) = min
u∈U

Hu(p̃(t)).

Remark 2.4. Note that if we consider the minimization problem (5) instead of the
Bolza problem, it is well known that there are minimizers which do not satisfy the
Hamiltonian system (6). They are called abnormal minimizers and their existence
is due to the fact that the endpoint mapping is not a submersion. Such a problem
does not arise in the Bolza problem since we are minimizing among curves x(·) with
only the initial point x(0) fixed. (See below for definitions of endpoint mapping
and abnormal minimizers.)
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Remark 2.5. Let ∆ ⊂ TM be a distribution on an n-dimensional manifold M .
That is, for each point x in the manifold M , it smoothly assigns a vector subspace
∆x of the tangent space TxM . Assume that the distribution ∆ is trivializable, i.e.
that there exists a system of vector fields X1, ..., Xk which span ∆ at every point:
∆x = span{X1(x), ..., Xk(x)}. Consider the following control system:

(7) ẋ(t) =

k∑
i=1

ui(t)Xi(x(t)),

with initial condition x(0) = x and final condition x(1) = y. Recall that we denote
by Cy

x the set of all admissible pairs (x(·), u(·)) such that the admissible path x(·)
satisfies x(0) = x and x(1) = y. Let c be the cost given by

(8) c(x, y) = inf
(x(·),u(·))∈C

y
x

∫ 1

0

k∑
i=1

u2
i dt.

If the number of vector fields k is equal to the dimension n of the manifoldM and the
vector fields X1, ..., Xk are everywhere linearly independent, then the distribution
∆ is the same as the tangent bundle TM of M and the admissible paths of the
control system (7) are all the paths on M . It also defines a Riemannian metric
on M by declaring that the vector fields X1, ..., Xn are orthonormal everywhere.
The cost function c is the square of the Riemannian distance d: c = d2, and the
minimizers of this system correspond to the length minimizing geodesics on M .
However, this does not work for distributions which are not trivializable.

To overcome this difficulty, we can modify the general definition of control sys-
tems in the following way. Let P be a locally trivial bundle on M with bundle
projection πP : P → M and let F : P → TM be a fibre-preserving map, i.e.
F (Px) ⊆ TxM . The control system corresponding to the map F is given by

(9) ẋ(t) = F (v(t)).

The admissible pairs v(·) : [0, 1] → P are locally bounded measurable paths in P
such that its projection to the manifold M is a Lipschitz path: x(·) = πP (v(·)) is
Lipschitz. If we let P be the trivial bundle M × U , we get back the system (4). If
a Lagrangian L : P → R is fixed, then the corresponding cost function c is defined
by

(10) c(x, y) = inf
v(·)∈C

y
x

∫ 1

0

L(v(t))dt,

where the infimum is taken over all admissible pairs v(·) : [0, 1] → P such that the
corresponding admissible path x(·) = πP (v(·)) satisfies x(0) = x and x(1) = y.

Let 〈, 〉 be a Riemannian metric on the manifold M . If P is the tangent bundle
TM of M , the map F is the identity map and the Lagrangian L : P → R is given
by L(v) = 〈v, v〉, then the cost function c is equal to the square of the Riemannian
distance. If k < n, then the admissible paths of the control system (7) are paths
tangent to the distribution ∆. Similar to the Riemannian case, the control system
defines a subriemannian metric 〈, 〉S. (See section 6 for the basics on subriemannian
geometry.) The cost (8) is the square of the subriemannian distance dS : c = d2S .
For general distributions ∆ which are not trivializable, consider the general control
system (9) with P = ∆. F : ∆ ↪→ TM is the inclusion map. If the Lagrangian L is
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defined by L(v) = 〈v, v〉S , then the cost is again the square of the subriemannian
distance.

In this paper (except in section 8), we consider the control systems of the form
(4) in order to avoid heavy notation. All the results have an easy generalization to
the more general intrinsically defined systems just introduced.

3. Optimal mass transport

The theory of optimal mass transportation is about moving one mass to another
that minimizes certain costs. More precisely, let M be a manifold and consider a
function c : M×M → R∪{+∞}, called the cost function. Let µ and ν be two Borel
probability measures on the manifold M . Then the optimal mass transportation is
the following problem:

Problem 3.1. Find a Borel map which achieves the following infimum among all
Borel maps φ : M → M that push the probability measure µ forward to ν:

inf
φ∗µ=ν

∫
M

c(x, φ(x)) dµ.

Here, we recall that the push forward φ∗µ of a measure µ by a Borel map φ is
defined by φ∗µ(B) = µ(φ−1(B)) for all Borel sets B in M . In many cases, such a
problem admits a solution which is unique (up to measure zero), assuming absolute
continuity of the measure µ with respect to the Lebesgue measure. This unique
solution to (3.1) is called the optimal map or the Brenier map.

The first optimal map was found by Brenier in [8] in the case where the manifold
was R

n and the cost was c(x, y) = |x − y|2. Later, it was generalized to arbitrary
closed, connected Riemannian manifolds in [18] with the cost given by the square of
the Riemannian distance. The case for the Heisenberg group with the cost given by
d2 was done in [1], where d was the subriemannian distance or the gauge distance.
In [7], a much more general cost given by the action associated to a Lagrangian
function L : TM → R on a compact manifold M was considered. More precisely,

(11) c(x, y) = inf
x(0)=x,x(1)=y

∫ 1

0

L(x(t), ẋ(t))dt,

where the infimum is taken over all curves joining the points x and y.
The existence and uniqueness of an optimal map with the cost given by (11) was

shown under the following assumptions:

• The Lagrangian L is fibrewise strictly convex; i.e. the map restriction of L
to the tangent space TxM is strictly convex for each fixed x in the manifold
M .

• L has superlinear growth; i.e. L(v)/|v| → 0 as |v| → ∞.
• The cost c is complete; i.e. the infimum (11) is always achieved by some
C2 smooth paths.

Recently, the compactness assumption on the manifold or on the measures was
eliminated by [12, 11].

In this paper, we consider a connected manifold M without boundary and the
cost function c is given by (5). Consider the following relaxed version of Problem
3.1, called Kantorovich reformulation. Let π1 : M×M → M and π2 : M×M → M
be the projections onto the first and the second components, respectively. Let Γ be
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the set of all joint measures Π on the product manifold M ×M with marginals µ
and ν: π1∗Π = µ and π2∗Π = ν.

Problem 3.2. Find minimizers for

C(µ, ν) := inf
Π∈Γ

∫
M×M

c(x, y) dΠ(x, y).

Remark 3.3. If φ is an optimal map in the problem in (3.1), then (id × φ)∗µ is a
joint measure in the set Γ. Therefore, Problem 3.2 is a relaxation of the problem
in (3.1).

Before we proceed into the existence proof of an optimal map, let us look at the
following dual problem of Kantorovich. See [23] for the history and importance of
this dual problem for optimal transportation.

Let c be a cost function and let f be a function on the manifold M . The c1-
transform of the function f is the function fc1 given by

f c1(y) := inf
x∈M

[c(x, y)− f(x)].

Similarly, the c2-transform of the function f is defined by

f c2(x) := inf
y∈M

[c(x, y)− f(y)].

The function f is a c-concave function if it satisfies fc1c2 = f . Let F be the set of
all pairs of functions (g, h) on the manifold such that g : M → R ∪ {−∞} and h :
M → R∪{−∞} are in L1(µ) and L1(ν), respectively, and g(x)+h(y) ≤ c(x, y) for
all (x, y) ∈ M×M . The dual problem of Kantorovich is the following maximization
problem:

Problem 3.4. Find maximizers for

sup
(g,h)∈F

∫
M

gdµ+

∫
M

h dν.

The existence of a solution to the above problem is well known. See [23, Theorem
1.3].

Theorem 3.5. Assume that there exist two functions c1 and c2 such that c1 is
µ-measurable, c2 is ν-measurable and the cost function c satisfies c(x, y) ≤ c1(x) +
c2(y) for all (x, y) in M ×M . If c is also continuous, bounded below and C(µ, ν) <
∞, then there exists a c-concave function f such that the function f is in L1(µ),
its c1-transform f c1 is in L1(ν) and the pair (f, f c1) achieves the supremum in
Problem 3.4.

The following theorem on the regularity of the dual pair above is also well known.
Stronger results can be found in [24, Chapter 12]. We give a simple proof here for
the convenience of the reader.

Theorem 3.6. Assume that the cost c(x, y) is continuous, bounded below and the
measures µ and ν are compactly supported. Then the functions f and fc1 are upper
semicontinuous. If the function x �→ c(x, y) is also locally Lipschitz on a set U and
the Lipschitz constant is independent of y locally, then f can be chosen to be locally
Lipschitz on U .
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Proof. Fix ε > 0. Since f(x) = infx∈M [c(x, y) − f c1(y)], there exists y such that
f(x) + ε/2 > c(x, y)− fc1(y). Also, we have f(x′) + f c1(y) ≤ c(x′, y) for any x′ in
M . So, combining the above equations and the continuity of the cost c, we have

f(x′)− f(x) < ε

for any x′ sufficiently close to x. Therefore, f is upper semicontinuous.
Let K be a compact set containing the support of the measures µ and ν. Let

g(x) =

{
f(x), if x ∈ K,
−∞, if x ∈ M \K,

g′(x) =

{
f c1(x), if x ∈ K,
−∞, if x ∈ M \K.

Then the pair (g, g′) achieves the maximum in Problem 3.4. Let h = (g′)c2 . Then
the pair (h, hc1) also achieves the maximum. By definition of g′, we have h(x) =
inf
y∈K

[c(x, y)−f c1(y)]. By an argument the same as the proof of upper semicontinuity,

for any x and x′ in the compact subset K ′ of U , we can find y in K such that

h(x′)− h(x) < c(x, y)− c(x′, y) + ε/2.

By the assumption of the cost c, the above inequality becomes

h(x′)− h(x) ≤ kd(x, x′) + ε/2

for some constant k > 0 which is independent of x on the subset K ′. By switching
the roles of x and x′, the result follows. �

The following theorem about minimizers of the Problem 3.2 is well known. See,
for instance, [23, Chapter 2], [24, Theorem 5.10].

Theorem 3.7. In the assumptions as in Theorem 3.5, Problem 3.2 admits a mini-
mizer. Moreover, the joint measure Π in the set Γ achieves the infimum in Problem
3.2 if and only if Π is concentrated on the set

{(x, y) ∈ M ×M |f(x) + f c(y) = c(x, y)}.

4. Existence and uniqueness of an optimal map

In this section, we show that Monge’s problem with cost given by an optimal
control cost (3) can be solved under certain regularity assumptions. LetH : T ∗M →
R be the function defined by

H(px) = max
u∈U

(px(F (x, u))− L(x, u)) .

If H is well defined and C2, then we denote its Hamiltonian vector field by
−→
H

and let et
−→
H be its flow. Let f be the function defined in Theorem 3.5 which is

Lipschitz for µ-almost all x. Consider the map ϕ : M × [0, 1] → M defined by

ϕ(x, t) = π(et
−→
H (−dfx)).

Theorem 4.1. The map x �→ ϕ1(x) := ϕ(x, 1) is the unique (up to µ-measure
zero) optimal map to the Problem (3.1) with cost c given by (5) under the following
assumptions:

(1) The measures µ and ν are compactly supported and µ is absolutely contin-
uous with respect to the Lebesgue measure.

(2) c is bounded below and c(x, y) is also locally Lipschitz in the x variable and
the Lipschitz constant is independent of y locally.



OPTIMAL TRANSPORTATION UNDER NONHOLONOMIC CONSTRAINTS 6027

(3) The cost c is complete; i.e. given any pairs of points (x0, x1) in the manifold
M , there exists an admissible pair (x(·), u(·)) such that the pair achieves
the infimum in (5), where u(·) is locally bounded measurable, x(0) = x0 and
x(1) = x1.

(4) The Hamiltonian function H defined in (16) is well defined and C2.

(5) The Hamiltonian vector field
−→
H is complete; i.e. global flow exists.

The rest of this section is devoted to the proof of Theorem 4.1. Let C̃y be the
set of all admissible pairs such that the corresponding admissible paths x(·) start
from the point y (x(0) = y) and satisfies the following control system:

(12) ẋ(t) = −F (x(t), u(t)).

Let C̃x
y be the set of all those pairs in C̃y such that the corresponding admissible

paths x(·) end at the point x: x(1) = x.
First, we have the following observation.

Proposition 4.2. Let x be a point which achieves the infimum fc1(y) =

inf
x∈M

(c(x, y)− f(x)) and let (x̃, ũ) be an admissible pair in C̃x
y such that the corre-

sponding admissible path x̃ minimizes the cost given by

c(x, y) = inf
(x(·),u(·))∈C̃x

y

∫ 1

0

L(x(t), u(t)) dt.

Then (x̃(·), ũ(·)) achieves the following infimum:

(13) fc1(y) = inf
(x(·),u(·))∈C̃y

∫ 1

0

L(x(s), u(s)) ds− f(x(1)).

If x̂(t) = x̃(1− t), then x̂ achieves the following infimum:

(14) fc1(y) = inf
(x(·),u(·))∈Cy

∫ 1

0

L(x(s), u(s)) ds− f(x(0)),

where Cy denotes the set of all admissible pairs (x(·), u(·)) satisfying the following
control system:

ẋ(t) = F (x(t), u(t)), x(1) = y.

Let ũ(·) be as in the above proposition and let û(t) = ũ(1−t). LetHt : T
∗M → R

be given by Ht(px) = px(F (x, û(t))) − L(x, û(t)). The following is a consequence
of Theorem 2.3.

Proposition 4.3. Let x̃ be a curve that achieves the infimum in (13) and let
x̂(t) = x̃(1 − t). Assume that α is contained in the sub-differential of the function
f at the point x̂(0). Then there exists a Lipschitz curve p̂ : [0, 1] → T ∗M in the
cotangent bundle such that the following are true for almost all time t in the interval
[0, 1]:

(15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π(p̂(t)) = x̂(t),
˙̂p(t) =

−→
H t(p̂(t)),

p̂(0) = −α,
Ht(p̂(t)) = max

u∈U
(p̂(t)(F (x̂(t), u))− L(x̂(t), u)) .
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Proof. By Theorem 2.3, there exists a curve p̃ : [0, 1] → T ∗M in the cotangent
bundle T ∗M such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

π(p̃(t)) = x̃(t),
p̃(1) = −α,

˙̃p(t) =
−→
H̃ ũ(t)(p̃(t)),

H̃ũ(t)(p̃(t)) = min
u∈U

(−p̃(t)(F (x̃(t), ũ(t))) + L(x̃(t), ũ(t))) ,

where H̃ũ(p) = min
u∈U

(−p̃(F (x̃, ũ(t))) + L(x̃, ũ(t))).

Let p̂(t) = p̃(1− t) and û(t) = ũ(1− t). Then the equations above become⎧⎪⎪⎪⎨⎪⎪⎪⎩
π(p̂(t)) = x̂(t),
p̂(0) = −α,
˙̂p(t) =

−→
H û(t)(p̂(t)),

Hû(t)(p̂(t)) = max
u∈U

(p̂(t)(F (x̂(t), û(t)))− L(x̂(t), û(t))) .

�

Assume that the Hamiltonian function H : T ∗M → R defined by

(16) H(px) = max
u∈U

(px(F (x, u))− L(x, u))

is well defined and C2. Let
−→
H be the Hamiltonian vector field of the function H and

let et
−→
H be its flow. The function f defined in Theorem 3.5 is Lipschitz and so it is

differentiable almost everywhere by the Rademacher Theorem. Moreover, the map
df : M → T ∗M is measurable and locally bounded. So, if we let ϕ : M× [0, 1] → M

be the map defined by ϕ(x, t) = π(et
−→
H (−dfx)), then the map ϕ is a Borel map.

Proposition 4.4. Under the assumptions of Theorem 4.1, the following is true for
µ-almost all x: Given a point x in the support of µ, there exists a unique point y
such that

f(x) + f c1(y) = c(x, y).

Moreover, the points x and y are related by y = ϕ(x, 1).

Proof. We first claim that the infimum f(x) = infy∈M [c(x, y)− f c1(y)] is achieved
for µ almost all x. Indeed, by assumption, we have f(x) + fc1(y) ≤ c(x, y) for
all (x, y) in M × M . Also, let Π be the measure defined in Theorem 3.7. Then
f(x) + fc1(y) = c(x, y) for Π-almost everywhere. Since the first marginal of the
measure Π is µ, the following is true for µ almost all x: Given a point x in the
manifold M , there exists y in M such that f(x)+ fc1(y) = c(x, y). This proves the
claim.

Fix a point x for which the infimum infy∈M [c(x, y) − f c1(y)] is achieved and
let y be the point which achieves the infimum. By the proof of the above claim, x
achieves the infimum fc1(y) = infx∈M [c(x, y)−f(x)]. Therefore, by completeness of
the cost c and Proposition 4.2, there exists an admissible path x̂ such that x̂(0) = x,
x̂(1) = y and x̂ achieves the infimum (14).

Since f is Lipschitz on a bounded open set U containing the support of µ and ν,
it is almost everywhere differentiable on U by the Rademacher Theorem. Since µ is
absolutely continuous with respect to the Lebesgue measure, f is also differentiable
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µ-almost everywhere. By Theorem 4.3, for µ-almost all x, there exists a curve
p̂ : [0, 1] → T ∗M in the cotangent bundle T ∗M such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

˙̂p(t) =
−→
H t(p̂(t)),

p̂(0) = −dfx,
π(p̂(t)) = x̂(t),
Ht(p̂(t)) = max

u∈U
(p̂(t)(F (x̂(t), u))− L(x̂(t), u)) ,

where Ht is the function on the cotangent bundle T ∗M given by Ht(px) =
pxF (x, u(t))− L(x, u(t)).

By the definition of H, we have H(p̂(t)) = Ht(p̂(t)). But, we also have H(p) ≥
Ht(p) for all p ∈ T ∗M . Since bothH and Ht are C

2, we have dH(p̂(t)) = dHt(p̂(t)).

Hence,
−→
H t(p̂(t)) =

−→
H (p̂(t)) for almost all t. The result follows from the uniqueness

of the solution to the ODE. �

The rest of the arguments for the existence and uniqueness of an optimal map
follow from Theorem 3.7.

Proof of Theorem 4.1. As mentioned above, Problem 3.2 is a relaxation of Problem
3.1. We can recover the latter from the former by restricting the minimization to
joint measures of the form (id × φ)∗µ, where φ is any Borel map pushing forward
µ to ν. Therefore, the results follow from Theorem 3.7 and Proposition 4.4. �

5. Regularity of control costs

In Theorem 4.1, we prove the existence and uniqueness of optimal maps under
certain regularity conditions on the cost. Most of the conditions in the theorem
are easy to verify except conditions (2) and (3). In this section, we will give simple
conditions which guarantee this regularity. This includes the completeness and the
Lipschitz regularity of the cost. First, we recall some basic notions in the geometry
of optimal control problems; see [2, 14] and the references therein for the details.

Fix a point x0 on the manifold M and assume that the control set U is R
k.

In this section, we change our previous convention on admissible controls. From
now on, admissible controls are mappings in L1([0, 1], U) rather than L∞([0, 1], U).
Denote by Cx0

the set of all admissible pairs (x(·), u(·)) such that the corresponding
admissible paths x(·) start at x0. Moreover, we assume that the control system is
of the following form:

(17) ẋ(t) = X0(x(t)) +
k∑

i=1

ui(t)Xi(x(t)),

where u(t) = (u1(t), ..., uk(t)) and X0, X1, ..., Xk are fixed smooth vector fields on
the manifold M . The Cauchy problem for system (17) is well posed for any locally
integrable vector function u(·). We assume, throughout this section, that system
(17) is complete, i.e. that all solutions of the system are defined on the whole semi-
axis [0,+∞). This completeness assumption is automatically satisfied if one of the
following is true: (i) if M is a compact manifold, (ii) if M is a Lie group and the
fields Xi are left-invariant, or (iii) if M is a closed submanifold of the Euclidean
space and |Xi(x)| ≤ c(1 + |x|), i = 0, 1, . . . , k.

Define the endpoint map Endx0
: L1([0, 1],Rk) → M by

Endx0
(u(·)) = x(1),
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where (x(·), u(·)) is the admissible pair corresponding to the control system (17)
with initial condition x(0) = x0. It is known that the map Endx0

is a smooth map-
ping. The critical points of the map Endx are called singular controls. Admissible
paths corresponding to singular controls are called singular paths.

We also need the Hessian of the mapping Endx0
at the critical point. (See [4]

for the details.) Let E be a Banach space which is an everywhere dense subspace
of a Hilbert space H. Consider a mapping Φ : E → R

n such that the restriction of
this map Φ

∣∣
W

to any finite-dimensional subspace W of the Banach space E is C2.
Moreover, we assume that the first and second derivatives of all the restrictions
Φ
∣∣
W

are continuous in the Hilbert space topology on the bounded subsets of E. In
other words,

Φ(v + w)− Φ(v) = DvΦ(w) +
1

2
D2

vΦ(w) + o(|w|2), w ∈ W,

where DvΦ is a linear map and D2
vΦ is a quadratic mapping from E to R

n. More-
over, Φ(v), DvΦ

∣∣
W
, and D2

vΦ
∣∣
W

depend continuously on v in the topology of H
while v is contained in a ball of E.

The Hessian HessvΦ : kerDvΦ → cokerDvΦ of the function Φ is the restriction
of D2

vΦ to the kernel of DvΦ with values considered up to the image of DvΦ. The
Hessian is the part of D2

vΦ which survives smooth changes of the variables in E
and R

n.
Let p be a covector in the dual space Rn∗ such that p(DvΦ) = 0. Then p(HessvΦ)

is a well-defined real quadratic form on kerDvΦ. We denote the Morse index of
this quadratic form by ind(pHessvΦ). Recall that the Morse index of a quadratic
form is the supremum of the dimensions of the subspaces where the form is negative
definite.

Definition 5.1. A critical point v of the map Φ is called sharp if there exists a
covector p �= 0 such that p(DvΦ) = 0 and ind(pHessvΦ) < +∞.

Needless to say, the spaces E,H and R
n can be substituted by smooth manifolds

(Banach, Hilbert and n-dimensional) in all this terminology.
Going back to the control system (17), let (x(·), u(·)) be an admissible pair for

this system. We say that the control u(·) and the path x(·) are sharp if u(·) is a
sharp critical point of the endpoint map Endx(0).

One necessary condition for controls and paths to be sharp is the, so-called, Goh
condition.

Proposition 5.2 (The Goh condition). If p(Hessu(·)(Endx(0))) < +∞, then

p(t)(Xi(x(t))) = p(t)([Xi, Xj ](x(t))) = 0 i, j = 1, . . . , k, 0 ≤ t ≤ 1,

where p(t) = P ∗
t,1p and Pt,τ is the local flow of the control system (20) with control

equal to u(·) and time parameter τ .

See [4, Proposition 20.3, 20.4], [6] and the references therein for the proof and
other effective necessary and sufficient conditions of the sharpness.

Now consider the optimal control problem

(18) c(x, y) = inf
(x(·),u(·))∈C

y
x

∫ 1

0

L(x(t), u(t)) dt,

where the infimum ranges over all admissible pairs (x(t), u(t)) corresponding to the
control system (17) with initial condition x(0) = x and final condition x(1) = y.
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Let H : T ∗M → R be the Hamiltonian function defined in (16). For simplicity,
we assume that the Hamiltonian is C2. A minimizer x(·) of the above problem
is called normal if there exists a curve p : [0, 1] → T ∗M in the cotangent bundle
T ∗M such that π(p(t)) = x(t) and p(·) is a trajectory of the Hamiltonian vector

field
−→
H . Singular minimizers are also called abnormal. According to this, not so

perfect, terminology a minimizer can simultaneously be normal and abnormal. A
minimizer which is not normal is called strictly abnormal. Under some regularity
and growth conditions on the Lagrangian L, all strictly abnormal minimizers are
sharp. (See Theorem 5.3.)

The following theorem gives simple sufficient conditions for completeness of the
cost function defined in (18). It is a combination of the well-known existence result
(see [21]) and necessary optimality conditions (see [4]).

Theorem 5.3 (Completeness of costs). Let L be a Lagrangian function which
satisfies the following:

(1) L is bounded below and there exists a constant K > 0 such that the ratio
|u|

L(x,u)+K tends to 0 as |u| → ∞ uniformly on any compact subset of M ;

(2) for any compact C ⊂ M there exist constants a, b > 0 such that |∂L∂x (x, u)| ≤
a(L(x, u) + |u|) + b, ∀x ∈ C, u ∈ R

k;
(3) the function u �→ L(x, u) is a strongly convex function for all x ∈ M .

Then, for each pair of points (x, y) in the manifold M which satisfy c(x, y) < +∞,
there exists an admissible pair (x(·), u(·)) achieving the infimum in (18). Moreover,
the minimizer x(·) is either a normal or a sharp path.

Remark 5.4. Under the assumptions of the theorem, strictly abnormal minimizers
are sharp.

Remark 5.5. Theorem 5.3 leads to many examples that satisfy condition (3) in
Theorem 4.1. In particular, this applies to the case where the control set is U = R

k

and the Lagrangian is L(x, u) =
∑k

i=1 u
2
i .

Remark 5.6. It was shown that the optimal controls in Theorem 5.3 that are normal
are locally bounded. (See [21].) This allows us to restrict the endpoint map to
L∞([0, 1], U) in Theorem 5.7 below.

Next, we proceed to the main result of this section, which is concerned with
the Lipschitz regularity of the cost function. This takes care of condition (2) in
Theorem 4.1.

Theorem 5.7 (Lipschitz regularity). Assume that the system (7) does not admit
sharp controls and the Lagrangian L satisfies the conditions of Theorem 5.3. Then
the set D = {(x,Endx(u(·)))|x ∈ M,u ∈ L∞([0, 1],Rk)} is open in the product
M ×M . Moreover, the function (x, y) �→ c(x, y) is locally Lipschitz on the set D,
where the cost c is given by (5).

Remark 5.8. In the case where the endpoint map is a submersion, there is no
singular control. Therefore, Theorem 5.7 is applicable. In particular, this theorem,
together with Theorems 4.1 and 5.3, can be used to treat the cases considered in
[8, 18, 7]. In section 5, we will consider a class of examples where the endpoint map
is not necessarily a submersion, but Theorem 5.7 is still applicable.

The rest of the section is devoted to the proof of Theorem 5.7.
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Definition 5.9. Given v in the Banach space E, we write IndvΦ ≥ m if

ind(pHessvΦ)− codim imDvΦ ≥ m

for any p in R
n∗ \ {0} such that p(DvΦ) = 0.

It is easy to see that {v ∈ E : IndvΦ ≥ m} is an open subset of E for any integer
m. Let Bv(ε), Bx(ε) be the balls of radius ε in E and R

n centered at v and x
respectively. The following is a qualitative version of the openness of a mapping Φ
and any mapping C0 close to it.

Definition 5.10. We say that the map Φ : E → R
n is r-solid at the point v of

the Banach space E if for some constant c > 0 and any sufficiently small ε > 0,
the following inclusion holds for any map Φ̃ : Bv(ε) → R

n which is C0 close to the
map Φ:

BΦ̃(v)(cε
r) ⊂ Φ̃(Bv(ε)).

As usual, to be C0 close to Φ means that there exists δ > 0 such that sup
w∈Bv(ε)

|Φ̃(w)−

Φ(w)| ≤ δ.

The Implicit Function Theorem, together with the Brouwer Fixed Point Theo-
rem, implies that Φ is 1-solid at any regular point.

Lemma 5.11. If IndvΦ ≥ 0, then Φ is 2-solid at v.

Proof. This lemma is a refinement of Theorem 20.3 from [4]. It can be proved by
a slight modification of the proof of the cited theorem. Obviously, we may assume
that v is a critical point of Φ. Moreover, by an argument in the proof of the
theorem cited above, we may assume that E is a finite-dimensional space, v = 0
and Φ(0) = 0.

Let E = E1 ⊕ E2, where E2 = kerD0Φ. For any w ∈ E we write v = v1 + v2,
where v1 ∈ E1, v2 ∈ E2. Now consider the mapping

Q : v �→ D0Φv1 +
1

2
D2

0Φ(v2), v ∈ E.

It is shown in the proof of [4, Theorem 20.3] that Q−1(0) contains regular points
in any neighborhood of 0. Hence, there exists c > 0 such that the image of any
continuous mapping Q̃ : B0(1) → R

n sufficiently close (in the C0-norm) to Q
∣∣
B0(1)

contains the ball B0(c). Now, if Φ̃ is C0 close to Φ, we set Φε(v) =
1
ε2Φ(ε

2v1+ εv2)

and Φ̃ε(v) =
1
ε2 Φ̃(ε

2v1 + εv2). Then, by differentiating Φε with respect to ε, it is

easy to see that Φε(v) = Q(v) + o(1) as ε → 0. This shows that Φε and hence Φ̃ε

are C0 close to Q for all sufficiently small ε. Therefore, Φ̃ε

∣∣
B0(1)

contains the ball

B0(c). This gives

B0(c) ⊂ Φ̃ε(B0(1)) ⊂
1

ε2
Φ̃(B0(ε)),

and the result follows. �
Remark 5.12. The minimization problem (18) can be rephrased into a constrained
minimization problem in an infinite-dimensional space. For simplicity, consider the
case where M = R

n. Let (x(·), u(·)) be an admissible pair of the control system
(17) and let ϕ : Rn × L∞([0, 1],Rk) → R be the function defined by

ϕ(x, u(·)) =
∫ 1

0

L(x(t), u(t))dt.
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Let Φ : Rn × L∞([0, 1],Rk) → R
n × R

n be the map

Φ(x, u(·)) = (x,Endx(u(·))).

Finding the minimum in (18) is now equivalent to minimizing the function ϕ on
the set Φ−1(x, y).

Due to the above remark, we can consider the following general setting. Consider
a function ϕ : E → R on the Banach space E such that ϕ|W is a C2-mapping for
any finite-dimensional subspace W of E. Recall that the Hilbert space H contains
E as a dense subset. Assume that the function ϕ as well as the first and second
derivatives of the restrictions ϕ|W are continuous on the bounded subsets of E in
the topology of H. Also, recall that the map Φ : E → R

n is C2 when restricted
to any finite-dimensional subspace of E. Assume that K is a bounded subset of E
that is compact in the topology of H and satisfies the following property:

ϕ(v) = min{ϕ(w)|w ∈ E, Φ(w) = Φ(v)}

for any v in the set K.
We define a function µ on Φ(K) by the formula µ(Φ(v)) = ϕ(v) for any v in

K. In the case discussed in Remark 5.12, K is the set of all minimizers and the
function µ is the cost function.

Lemma 5.13. If IndvΦ ≥ 2 for any v ∈ K, then µ is locally Lipschitz.

Proof. Given v in the set K, there exists a finite-dimensional subspace W of the

Banach space E such that Indv
(
Φ
∣∣
W

)
≥ 2. Then Indv

(
Φ
∣∣
W∩kerDvϕ

)
≥ 0. Hence

Φ
∣∣
W∩kerDvϕ

is 2-solid at v and

Φ (Bv(ε) ∩W ∩ kerDvϕ) ⊃ BΦ(v)(cε
2)

for some c and any sufficiently small ε.
Let x = Φ(v) and |x−y| = cε2. Then y = Φ(w) for some w ∈ Bv(ε)∩W∩kerDvϕ.

We have

µ(y)− µ(x) ≤ ϕ(w)− µ(x) = ϕ(w)− ϕ(v) ≤ c′|w − v|2 ≤ c′ε2.

Here, we use the fact that w is in kerDvϕ for the second to last inequality and that
w is in Bv(ε) for the last inequality. Moreover, the compactness of K allows us to
choose c, c′ and the bound for ε for all v ∈ K. In particular, we can exchange x

and y in the last inequality. Hence |µ(y)− µ(x)| ≤ c′

c |y − x|. �

Proof of Theorem 5.7. We describe the proof only in the case M = R
n in order to

simplify the language. Generalization to any manifold is straightforward. We set

E = R
n × L∞([0, T ],Rk), H = R

n × L2([0, T ],Rk),

Φ(x, u(·)) = (x,Endx(u(·))), ϕ(x, u(·)) =
∫ 1

0

L(x(t), u(t)) dt,

and apply the above results.
First of all, Ind(x,u(·))Φ = Indu(·)Endx = +∞ for all (x, u(·)) since our system

does not admit sharp controls. Lemma 5.11 implies that Φ is 2-solid and D = Φ(E)
is open.



6034 ANDREI AGRACHEV AND PAUL LEE

Now let B be a ball in E equipped with the weak topology of H. The endpoint
mapping Φ is continuous as a mapping from B to R

2n. The strict convexity of L
implies that there is some constant c > 0 such that

ϕ(xn, un(·))− ϕ(x, u(·)) ≥ c‖un(·)− u(·)‖2L2 + o(1)

as xn → x, un(·) ⇀ u(·), and (xn, un(·)) ∈ B. Therefore, lim
n→∞

ϕ(xn, un(·)) ≥
ϕ(x, u(·)) and lim

n→∞
ϕ(xn, un(·)) = ϕ(x, u(·)) if and only if (xn, un(·)) converges to

(x, u(·)) in the strong topology of H.
Assume that ϕ(xn, un(·)) = µ(Φ(xn, un(·))) for all n. Inequality ϕ(x, u(·)) <

lim
n→∞

ϕ(xn, un(·)) would imply that

µ(Φ(x, u(·))) < lim
n→∞

µ(Φ(xn, un(·))).

On the other hand, the openness of the map Φ implies that the map µ is up-
persemicontinuous. Together with the continuity of Φ, we have the following in-
equality:

µ(Φ(x, u(·))) ≥ lim
n→∞

µ(Φ(xn, un(·))).

Hence lim
n→∞

ϕ(xn, un(·)) = ϕ(x, u(·)) and (xn, un(·)) converges to (x, u(·)) in the

strong topology of H.
Let C be a compact subset of D and let

K = {(x, u(·)) ∈ E : Φ(x, u(·)) ∈ C, ϕ(x, u(·)) = µ(Φ(x, u(·)))} .

Then K is contained in some ball B. Recall that B, equipped with the weak
topology, is compact. Now the calculations of the previous two paragraphs imply
compactness of K in the strong topology of H. Finally, we derive the Lipschitz
property of µ|C from Lemma 5.13. �

6. Applications: Mass transportation on subriemannian manifolds

In this section, we will apply the results in the previous sections to some subrie-
mannian manifolds. First, let us recall some basic definitions.

Let ∆ and ∆′ be two (possibly singular) distributions on a manifold M . Define
the distribution [∆,∆′] by

[∆,∆′]x = span{[v, w](x)|v is a section of ∆, w is a section of ∆′}.

Define inductively the following distributions: ∆2 = ∆+ [∆,∆] and ∆k = ∆k−1 +
[∆,∆k−1]. A distribution ∆ is called k-generating if ∆k = TM and the smallest
such k is called the degree of nonholonomy. Also, the distribution is called bracket
generating if it is k-generating for some k.

If ∆ is a bracket generating distribution, then it defines a flag of distributions
by

∆ ⊂ ∆2 ⊂ ... ⊂ TM.

The growth vector of the distribution ∆ at the point x is defined by
(dim∆x, dim∆2

x, ..., dimTxM). The distribution ∆ is called regular if the growth
vector is the same for all x. Let x(·) : [a, b] → M be an admissible curve, that is, a
Lipschitz curve almost everywhere tangent to ∆. The following classical result on
bracket generating distributions is the starting point of subriemannian geometry.
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Theorem 6.1 (Chow and Rashevskii). Given any two points x and y on a con-
nected manifold M with a bracket generating distribution, there exists an admissible
curve joining the two points.

Using the Chow-Rashevskii Theorem, we can define the subriemannian distance
d. Let 〈, 〉 be a fibre inner product on the distribution ∆, called a subrieman-
nian metric. The length of an admissible curve x(·) is defined in the usual way:

length(x(·)) =
∫ b

a

√
〈ẋ(t), ẋ(t)〉 dt. The subriemannian distance d(x, y) between

two points x and y is defined by the infimum of the lengths of all admissible curves
joining x and y. There is a quantitative version of the Chow-Rashevskii Theorem,
called the Ball-Box Theorem, which gives Hölder continuity of the subriemannian
distance. See [20] for the details.

Corollary 6.2. Let dS be the metric of a complete subriemannian space with a
distribution ∆. The function d2S is locally Lipschitz if and only if the distribution
is 2-generating.

Proof. The systems with 2-generating distributions do not admit sharp paths be-
cause these systems are not compatible with the Goh condition. So d2S is locally
Lipschitz by Theorem 5.7. Conversely, if the degree of nonholonomy of the distri-
bution is greater than 2, then it follows from the Ball-Box Theorem [20, Theorem
2.10] that the function d2S is Lipschitz. Indeed, let us fix a point x in the manifold
M . If d2S is locally Lipschitz, then d2S(x, y) ≤ c|x − y| for some constant c and for
all y in a neighborhood U of x. On the other hand, by the Ball-Box Theorem, there
exists a point z in U whose subriemannian distance dS from the point x is ε and
its Euclidean distance from x satisfies |x− z| < Cεk = CdkS(x, z) for some constant
C and for all sufficiently small ε. Here, k > 2 is the degree of nonholonomy of the
distribution. This gives a contradiction and so d2S is not Lipschitz. �

Combining Corollary 6.2 with Theorem 4.1, we prove the existence and unique-
ness of an optimal map for a subriemannian manifold with a 2-generating distribu-
tion.

Theorem 6.3. Let M be a complete subriemannian manifold defined by a 2-
generating distribution. Then there exists a unique (up to µ-measure zero) opti-
mal map to Monge’s problem with the cost c given by c = d2S . Here dS is the
subriemannian distance of M .

Remark 6.4. The locally Lipschitz property of the distance d off the diagonal is
guaranteed for a much larger class of distributions. In particular, it is proved
in [3] that a generic distribution of rank > 2 does not admit nonconstant sharp
trajectories. In the case of Carnot groups, the following estimates are valid: a
generic n-dimensional Carnot group with a rank k distribution does not admit
nonconstant sharp trajectories if n ≤ (k − 1)k + 1 and it has nonconstant sharp

length minimizing trajectories if n ≥ (k − 1)(k
2

3 + 5k
6 + 1). Recall that a simply

connected Lie group endowed with a left-invariant distribution V1 is a Carnot group
if the Lie algebra g is a graded nilpotent Lie algebra such that it is Lie generated
by the subspace with lowest grading (i.e. g = V1 ⊕ V2 ⊕ ... ⊕ Vk, [Vi, Vj ] = Vi+j ,
Vi = 0 if i > k and the subspace V1 Lie-generates g).

Clearly, if the cost is locally Lipschitz off the diagonal, then the statement of
Theorem 4.1 remains valid with the extra assumption that the supports of the
initial measure µ and the final measure ν are disjoint: supp(µ) ∩ supp(ν) = ∅.
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7. Normal minimizers and property of optimal map

with continuous optimal control cost

According to Theorem 5.7, it remains to study the case where sharp controls
exist. In this section, we will describe a property of an optimal map when the cost
is continuous. Normal minimizers will play a very important role.

We continue to study the optimal control problem (20), (21). As we already
mentioned, strictly abnormal minimizers must be sharp. In addition, if X0 = 0
in (17), then the optimal control cost is continuous. According to the discussion
at the end of the previous section, we expect strictly abnormal minimizers mainly
for generic rank 2 distributions on manifolds of dimension greater than 3 and for
generic Carnot groups of large enough corank. In these situations, strictly abnormal
minimizers are indeed unavoidable.

The existence of strictly abnormal minimizers for subriemannian manifolds was
first done in [19]. In [22] and [16], it was shown that there are many strictly
abnormal minimizers in general for subriemannian manifolds. (See, for instance,
Theorem 7.1 below.) Finally, a general theory on abnormal minimizers for rank 2
distributions was developed in [5]. See [20] for a detailed account on the history
and references on abnormal minimizers.

Here is a sample result in [22] which is of interest to us.

Theorem 7.1 (Liu and Sussman). Let M be a 4-dimensional manifold with a rank
2 regular bracket-generating distribution ∆ and subriemannian metric 〈, 〉. Let X1

and X2 be two global sections of ∆ such that

(1) X1 and X2 are everywhere orthonormal,
(2) X1, X2, [X1, X2] and [X2, [X1, X2]] are everywhere linearly dependent,
(3) X2, [X1, X2] and [X2, [X1, X2]] are everywhere linearly independent.

Then any sufficiently short segments of the integral curves of the vector field X2

are strictly abnormal minimizers.

We call a local flow a strictly abnormal flow if the corresponding trajectories
are all strictly abnormal minimizers. An interesting question is whether the time-1
map of an abnormal flow is an optimal map. The following theorem shows that
this is not the case for any reasonable initial measure and continuous cost.

Theorem 7.2. Assume that the cost c in (3.1) is continuous, bounded below and
the support of the measure µ is equal to the closure of its interior. If ϕ : M → M is
a continuous map such that (id×ϕ)∗µ achieves the infimum in Problem 3.2, then x
and ϕ(x) are connected by a normal minimizer on a dense set of x’s in the support
of µ.

Proof. By Theorem 3.5, there exists a function f : M → R ∪ {−∞} such that f
and its c1-transform achieve the supremum in Problem 3.4. Moreover, by Theorem
3.6, the functions f and fc1 are upper semicontinuous. By Theorem 3.7,

(19) f(x) + f c1(ϕ(x)) = c(x, ϕ(x))

for µ-almost all x. By the upper semicontinuity of f and fc1 ,

f(x) + f c1(ϕ(x)) ≥ c(x, ϕ(x)).

But f(x) + fc(y) ≤ c(x, y) for any x, y in the manifold M . So, (19) holds for
all x’s in the support U of µ. Therefore, x achieves the infimum fc1(φ(x)) =
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infz∈M [c(z, φ(x))− f c1(z)] for all x in the support of µ. Moreover, using (19), it is
easy to see that the function f is continuous on U . In particular, it is subdifferen-
tiable on a dense set of U . By Proposition 4.2 and Theorem 4.3, x and ϕ(x) are
connected by a normal minimizer if f is sub-differentiable at x. This proves the
theorem. �

8. Optimal maps with abnormal minimizers

In this section, we describe an important class of control systems which admit
smooth optimal maps built essentially from abnormal minimizers. Recall that ab-
normal minimizers are singular trajectories of the control system whose definition
does not depend on the Lagrangian.

Let ρ : M
G−→ N be a smooth principal bundle where the structural group G is

a connected Abelian Lie group. Let X1, . . . , Xk be the vertical vector fields which
generate the action of G. Consider the following control system:

(20) ẋ(t) = X0(x(t)) +
k∑

i=1

ui(t)Xi(x(t)),

where X0 is a smooth vector field on M , and the re-scaled systems

(21) ẋ(t) = εX0(x(t)) +
k∑

i=1

ui(t)Xi(x(t))

for ε > 0.
We define the Hamiltonian H : T ∗N → R by

(22) H(px) = max{px(dρ(X0(y))|y ∈ ρ−1(x)},
where px is a covector in T ∗N . We assume that the maximum above is achieved
for any p in T ∗N and it is finite.

A typical example is the Hopf bundle φ : SU(2)
S1

−→ S2 and a left-invariant
vector field F0. Then H(p) = α|p|, where α is a constant and |p| is the length of the
covector p with respect to the standard (constant curvature) Riemannian structure
on the sphere. (See [4, Section 22.2].)

Consider the following control system onN with an admissible pair y(·) contained
in the G-bundle ρ : M

G−→ N and an admissible trajectory x(t) = ρ(y(t)) (see
Remark 2.5):

(23) ẋ(t) = dρ(X0(y(t))).

The function H in (22) is the Hamiltonian of the time-optimal problem of the
control system (23). (Recall that the time optimal problem is the following mini-
mization problem: Fix two points x0 and x1 in N and minimize the time t1 among
all admissible trajectories x(·) of the control system (23) such that x(t0) = x0 and
x(t1) = x1.)

Remark 8.1. System (23) is the reduced system associated to system (20) according
to the reduction procedure described in [4, Chapter 22]. In particular, ρ transforms
any admissible trajectory of system (20) to the admissible trajectory of system (23).
Also, the smooth extremal trajectories of the time-optimal problem for system (23)
are images under the map ρ of singular trajectories of system (20).



6038 ANDREI AGRACHEV AND PAUL LEE

For any ε > 0 and any C2 smooth function f : N → R, we introduce the map

Φε
f : N → N, Φε

f (x) = π(eε
�H(dxf)), x ∈ N,

where π : T ∗N → N is the standard projection and t �→ et
�H is the Hamiltonian

flow of H. Set

D = {p ∈ T ∗N : H(p) > 0, H is of class C2 at p}.
Assume that Φε

f pushes the measure µ′ forward to another measure ν′ on N .

Consider some “lifts” µ and ν of the measures µ′ and ν′: ρ∗µ = µ′, ρ∗ν = ν′. Let
Ψ : M −→ M be an optimal map pushing forward µ to ν. Then the following
theorem says that Ψ is a covering of Φε

f : ρ ◦Ψ = Φε
f ◦ ρ.

Theorem 8.2. Let K be a compact subset of N and a ∈ C2(N). Assume that
df |K ⊂ D. Let µ and ν be Borel probability measures such that supp(ρ∗(µ)) ⊂ K.
Then, for any sufficiently small ε > 0 and any optimal Borel map Ψ : M → M of
the control system (21) with any Lagrangian L : TM → R, the following is true
whenever ρ∗(ν) = Φε

f ∗(ρ∗(µ)):

ρ ◦Ψ = Φε
f ◦ ρ.

In particular, x and Ψ(x) are connected by singular trajectories.

Proof. We start from the following.

Definition 8.3. We say that a Borel map Q : K → N is ε-admissible for system
(21) if there exists a Borel map ϕ : K → L∞([0, ε], G) such that

Q(x0) = x (ε;ϕ(x0)(·)) , ∀x0 ∈ K,

where t �→ x (t;ϕ(x0)(·)) is an admissible trajectory of the reduced control system
(23) with initial condition x (0;ϕ(x0)(·)) = x0.

We are going to prove that Φε
f is an admissible map, unique up to a ρ∗µ-measure

zero set, which transforms ρ∗µ into ρ∗ν. This fact implies the statement of the
theorem.

Inequality H(dxf) > 0 implies that dπ( 
H(dxf)) is transversal to the level hy-
persurface of f through x. Hence the map Φε

f is invertible in a neighborhood of K

for any sufficiently small ε. Moreover, the curve t �→ Φt
f (y), 0 ≤ t ≤ ε, is a unique

admissible trajectory of system (23) which starts at the hypersurface f−1(f(x)) and
arrives at the point Φε

f (x) at a time moment not greater than ε. The last fact is

proved by a simple adaptation of the standard sufficient optimality condition (see
[4, Chapter 17]).

Now we set

fε(x) = f
(
(Φε

a)
−1(x)

)
+ ε.

Then fε is a smooth function defined in a neighborhood of K.
The optimality property of Φε

f implies that

fε(Q(x)) ≤ fε
(
Φε

f (x)
)

for any ε-admissible map Q and any x ∈ K, and the inequality is strict at any point
x where Q(y) �= Φε

f (x). In particular, if

ρ∗µ
(
{x ∈ K : Q(x) �= Φε

f (x)}
)
> 0,
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then ∫
N

fε d(Q∗(ρ∗(µ))) =

∫
N

fε ◦Qd(ρ∗(µ))

<

∫
N

fε ◦ Φε
f d(ρ∗(µ)) =

∫
N

fε d(ρ∗(ν)).

Hence Q∗(ρ∗(µ)) �= ρ∗(ν). This proves the first part of the theorem. The fact that
x and Ψ(x) are connected by a singular minimizer follows from this and Remark
8.1. �

9. Example: The Grushin plane

The Grushin plane is the subriemannian space with base space R2 and a singular
distribution defined by the span of the vectors {∂x1

, x1∂x2
} in each tangent space.

In other words, the fibre of this distribution is the whole tangent space of R2 if
x1 �= 0 and it is spanned by ∂x1

otherwise. We define a subriemannian metric by
declaring that the two vector fields above are orthonormal. The control system is
given by

ẋ1 = u1, ẋ2 = u2x1.

The subriemannian distance d is given by d(x, y) = inf
C

y
x

∫ 1

0

√
u2
1 + u2

2 dt. In this

section, we consider the optimal transport problem with cost c given by c = d2.
There is no abnormal minimizer for this problem, so we consider its Hamiltonian

H given by

H(x1, x2, p1, p2) =
1

2
(p21 + x2

1p
2
2).

The corresponding Hamiltonian equation is

ẋ1 = p1, ẋ2 = x2
1p2, ṗ1 = −x1p

2
2, ṗ2 = 0.

For simplicity, we consider the case x1(0) = 0 = x2(0), and we let p1(0) = a and
p2(0) = b. In this case, the solutions give geodesics emanating from a point (0, δ)
on the y-axis. They are parameterized by (a, b) and are given by

(24) x1(t) =
a

b
sin(bt), x2(t) =

a2

4b2
(2bt− sin(2bt)) + δ

if b �= 0 and are given by

(25) x1(t) = at, x2(t) = δ

if b = 0. A geodesic is length minimizing if and only if −π/b ≤ t ≤ π/b.
Next, we consider the mass transport problem. Let d be the subriemannian

distance of the Grushin plane and consider Problem 3.1 with cost c given by the
square of the subriemannian distance d2. We also specialize to the case where the
target measure ν is equal to the delta mass supported at the origin. In this case,
the optimal map is clearly given by the constant map x �→ (0, 0). We are interested
in the displacement interpolation corresponding to this optimal map. Recall that
the displacement interpolation is the one-parameter family of maps φt such that φt

is the optimal map with the cost ct given by the following:

ct(x, y) = inf

∫ t

0

L(x(s), u(s)) ds,
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Figure 1. Some displacement interpolations
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Figure 2. Graph of the function f

where the infimum ranges over all admissible pairs (x(·), u(·)) of the control system
(4) with initial condition x(0) = x and final condition x(t) = y. It is easy to see

that if φ1 = π(e
−→
H (−df)) as in Theorem 4.1, then the displacement interpolation φt

is given by π(et
−→
H (−df)). (See Figure 1.) Moreover, the displacement interpolation

is related to the Hamilton-Jacobi equation via the method of characteristics. See
[7] and [10] for details.

To do this, we first evaluate the equations (24) and (25) at t = 1. Then we solve
a and b in terms of x1(1) and x2(1). If f : (−π, π) → R is the function defined by

f(b) = 2b−sin(2b)
4 sin2(b)

, then f is invertible. (See Figure 2.) A computation shows that

a =
f−1

(
x2(1)−δ
x1(1)2

)
x1(1)

sin
(
f−1

(
x2(1)−δ
x1(1)2

)) , b = f−1
(x2(1)− δ

x1(1)2

)
.

Therefore, the displacement interpolation is given by

ϕt(x1, x2) =
(a
b
sin(b(1− t)),

a2

4b2
(2tb− sin(2(1− t)b) + δ

)
,

where a = a(x1, x2) and b = b(x1, x2) are given by

a(x1, x2) =
f−1

(
x2−δ
x2
1

)
x1

sin
(
f−1

(
x2−δ
x2
1

)) , b(x1, x2) = f−1
(x2 − δ

x2
1

)
.

10. Appendix

This appendix is devoted to the proof of Theorem 2.3. The first step is to reduce
the problem into a simpler one. Recall that the Bolza problem is the following
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minimization problem:

inf
(x(·),u(·))∈Cx0

∫ 1

0

L(x(s), u(s)) ds− f(x(1))

where the infimum is taken over all admissible pairs (x(·), u(·)) satisfying the control
system

ẋ(s) = F (x(s), u(s))

and the initial condition x(0) = x0.
Let x = (x, z) be a point in the product manifold M × R and consider the

following extended control system on it:

(26) ẋ = F (x, u) := (F (x, u), L(x, u)).

Note that x(·) = (x(·), z(·)) satisfies this extended system and the initial con-
dition x(0) = (x0, 0) if and only if x(·) satisfies the original control system in the

Bolza problem with the initial condition x(0) = x0 and z(t) =
∫ t

0
L(q(s), u(s)) ds.

Therefore, Problem 2.2 is equivalent to the following problem.

Problem 10.1. Find minimizers for

(27) inf
(x(·),u(·))∈C(x0,0)

(z(1)− f(x(1))) ,

where the infimum is taken over all admissible pairs satisfying the extended control
system (26).

Problem 10.1 is an example of the Mayer problem. Letting g : N → R be
a function on the manifold N , the Mayer problem is the following minimization
problem:

Problem 10.2. Find minimizers for

inf
Cx0

g(x(1)),

where the infimum is taken over all admissible pairs (x(·), u(·)) satisfying the control
system

ẋ = F (x, u)

on N and the initial condition x(0) = x0.

Note that Problem 10.1 is the Mayer problem on the manifold N = M × R

with function g : M × R → R given by g(x, z) = z − f(x). Also, if α is in the
sub-differential d−fx of f at x, then (−α, 1) is in the super-differential d+g(x,z) of
g at (x, z).

Next, we will prove a version of the Pontryagin maximum principle for the Mayer
problem and show how Theorem 2.3 follows from this. For each point u in the
control set U , define the corresponding Hamiltonian function Hu : T ∗N → R by

Hu(px) = px(F (x, u)).

Theorem 10.3 (Pontryagin Maximum Principle for Mayer Problem). Let

(x̃(·), ũ(·)) be an admissible pair which achieves the infimum in Problem 10.2. As-

sume that the function g in Problem 10.2 is super-differentiable at the point x̃(1)
and let α be in the super-differential d+gx̃(1) of g. Then there exists a Lipschitz
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path p̃(·) : [0, 1] → T ∗N which satisfies the following for almost all times t in the
interval [0, 1]:

(28)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π(p̃(t)) = x̃(t),
p̃(1) = α,

˙̃p(t) =
−→
H ũ(t)(p̃(t)),

H ũ(t)(p̃(t)) = min
u∈U

Hu(p̃(t)).

Proof. Fix a point v in the control set and a number τ in the interval [0, 1]. For
each small positive number ε > 0, let uε be the admissible control defined by

uε(t) =

{
ũ(t), if t /∈ [τ − ε, τ ];
v, if t ∈ [τ − ε, τ ].

Since the optimal control ũ is locally bounded, the new control uε defined above
is also locally bounded. Let P ε

t0,t1 : N → N be the time-dependent local flow of the
following ordinary differential equation:

ẋ(t) = F (x(t), uε(t)).

Here, P ε
0,t(x) denote the image of the point x in the manifold N under the local

flow P ε
0,t at time t. It has the property that P ε

t2,t3 ◦P ε
t1,t2 = P ε

t1,t3 . Also, recall that
P ε
t0,t1 depends smoothly on the space variable, Lipschitz with respect to the time

variables.
Since x̃(1) = P 0

0,1(x0) and the function g is minimizing at x̃(1), the following is
true for all ε > 0:

(29) g(P ε
0,1(x0)) ≥ g(P 0

0,1(x0)).

Let α be a point in the super-differential d+gx̃(1) at the point x̃(1). Then there

exists a C1 function φ : N → R such that dφx̃(1) = α and g−φ has a local maximum

at x̃(1). Combining this with (29), we have

g(P 0
0,1(x0))− φ(P ε

0,1(x0))

≤ g(P ε
0,1(x0))− φ(P ε

0,1(x0)) ≤ g(P 0
0,1(x0))− φ(P 0

0,1(x0)).

Simplifying this equation, we get

(30)
φ(P ε

0,1(x0))− φ(P 0
0,1(x0))

ε
≥ 0.

If Rt denotes the flow of the vector field F v, then

(31) P ε
0,1 = P 0

τ,1 ◦Rε ◦ P 0
0,τ−ε.

So, if we assume that τ is a point of differentiability of the map t �→ P 0
0,t which

is true for almost all time τ in the interval [0, 1], then P ε
0,1 is differentiable with

respect to ε at zero. Therefore, we can let ε goes to 0 in (30) and obtain

(32) α

(
d

dε

∣∣∣
ε=0

P ε
0,1

)
≥ 0.

If we differentiate equation (31) with respect to ε and set it to zero, it becomes

d

dε

∣∣∣
ε=0

P ε
0,1 = (P 0

τ,1)∗(F v − F ũ(τ)) ◦ P 0
0,1.
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Substituting this equation back into (32), we get the following:

(33) ((P 0
τ,1)

∗α)(F v(x̃(τ ))− F ũ(τ)(x̃(τ ))) ≥ 0.

Define p̃ : [0, 1] → T ∗N by p̃(t) = (P 0
t,1)

∗α. Then the first two assertions of the
theorem are clearly satisfied.

The following is well known (see [4] or [17]).

Lemma 10.4. Let θ = pdq be the tautological 1-form on the cotangent bundle of
the manifold N . Then for each diffeomorphism P : N → N , the pull-back map
P ∗ : T ∗N → T ∗N on the cotangent bundle of the manifold preserves the 1-form θ.

Let Wt be the time-dependent vector field on the cotangent bundle of the man-
ifold which satisfies

d

dt
(P 0

t,1)
∗ = Wt ◦ (P 0

t,1)
∗

for almost all time t in [0, 1]. If LV denotes the Lie derivative with respect to a
vector field V , then, by Lemma 10.4, the following is true for almost all time t in
[0, 1]:

LWt
θ = 0.

If ω = −dθ is the canonical symplectic 2-form on the cotangent bundle, then, by
using Cartan’s formula, we have

iWt
ω = d(θ(Wt)).

Therefore, the vector field Wt is a Hamiltonian vector field with Hamiltonian given
by

H ũ(t)(p) = p(F (x, ũ(t))).

The third assertion of the theorem follows from this. The last assertion follows
from (33). �

Going back to Problem 10.1, we can apply the Pontryagin Maximum Principle for
the Mayer problem. Let (x̃(·), z̃(·)) be an admissible pair which minimizes Problem
10.1 and let Ht : T

∗M × R → R be the function defined by

Ht(p, l) = p(F (x, ũ(t))) + l · L(x, ũ(t)).

By Theorem 10.3, there exists a curve (p̃(·), l̃(·)) : [0, 1] → T ∗
x̃M × R such that

x̃(t) = π(p̃(t)) and

(34)

⎧⎪⎪⎨⎪⎪⎩
( ˙̃p,

˙̃
l) =

−→
H t(p̃, l̃),

(p̃(1), l̃(1)) = (−α, 1),

Ht(p̃(t), l̃(t)) = min
u∈U

(
p̃(t)(F (x̃(t), u)) + l̃(t) · L(x̃(t), u)

)
.

From the first equation in (34), we get
˙̃
l = 0 and l̃(1) = 1. So, l̃(t) ≡ 1. Therefore,

(34) is simplified to

(35)

⎧⎪⎨⎪⎩
˙̃p =

−→
H ũ(p̃),

p̃(1) = −α,

Hũ(p̃(t), P̃ (t)) = min
u∈U

(p̃(t)(F (x̃(t), u)) + L(x̃(t), u)) .

This finishes the proof of Theorem 2.3.
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