Fluctuations of the front in a one dimensional model of $X+Y\to 2X$
HTML articles powered by AMS MathViewer
- by Francis Comets, Jeremy Quastel and Alejandro F. Ramírez PDF
- Trans. Amer. Math. Soc. 361 (2009), 6165-6189 Request permission
Abstract:
We consider a model of the reaction $X+Y\to 2X$ on the integer lattice in which $Y$ particles do not move while $X$ particles move as independent continuous time, simple symmetric random walks. $Y$ particles are transformed instantaneously to $X$ particles upon contact. We start with a fixed number $a\ge 1$ of $Y$ particles at each site to the right of the origin. We prove a central limit theorem for the rightmost visited site of the $X$ particles up to time $t$ and show that the law of the environment as seen from the front converges to a unique invariant measure.References
- O. S. M. Alves, F. P. Machado, and S. Yu. Popov, The shape theorem for the frog model, Ann. Appl. Probab. 12 (2002), no. 2, 533–546. MR 1910638, DOI 10.1214/aoap/1026915614
- O. S. M. Alves, F. P. Machado, S. Yu. Popov, and K. Ravishankar, The shape theorem for the frog model with random initial configuration, Markov Process. Related Fields 7 (2001), no. 4, 525–539. MR 1893139
- Martin T. Barlow, Robin Pemantle, and Edwin A. Perkins, Diffusion-limited aggregation on a tree, Probab. Theory Related Fields 107 (1997), no. 1, 1–60. MR 1427716, DOI 10.1007/s004400050076
- Antar Bandyopadhyay and Ofer Zeitouni, Random walk in dynamic Markovian random environment, ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 205–224. MR 2249655
- M. Bramson, P. Calderoni, A. De Masi, P. Ferrari, J. Lebowitz, and R. H. Schonmann, Microscopic selection principle for a diffusion-reaction equation, J. Statist. Phys. 45 (1986), no. 5-6, 905–920. MR 881315, DOI 10.1007/BF01020581
- Francis Comets, Jeremy Quastel, and Alejandro F. Ramírez, Fluctuations of the front in a stochastic combustion model, Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), no. 2, 147–162 (English, with English and French summaries). MR 2303116, DOI 10.1016/j.anihpb.2006.01.005
- Harry Kesten, A renewal theorem for random walk in a random environment, Probability (Proc. Sympos. Pure Math., Vol. XXXI, Univ. Illinois, Urbana, Ill., 1976) Amer. Math. Soc., Providence, R.I., 1977, pp. 67–77. MR 0458648
- Harry Kesten and Vladas Sidoravicius, The spread of a rumor or infection in a moving population, Ann. Probab. 33 (2005), no. 6, 2402–2462. MR 2184100, DOI 10.1214/009117905000000413
- John Lamperti, Stochastic processes, Applied Mathematical Sciences, Vol. 23, Springer-Verlag, New York-Heidelberg, 1977. A survey of the mathematical theory. MR 0461600
- Mai, J.; Sokolov, I.M.; Kuzovkov, V.N.; Blumen, A. (1997). Front form and velocity in a one-dimensional auto-catalytic A+B$\to$2A reaction, Phys. Rev. E 56, 4130-4134.
- Panja, D. (2004). Effects of Fluctuations on Propagating Fronts, Physics Reports 393, 87-174.
- V. V. Petrov, Sums of independent random variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by A. A. Brown. MR 0388499
- A. F. Ramírez and V. Sidoravicius, Asymptotic behavior of a stochastic combustion growth process, J. Eur. Math. Soc. (JEMS) 6 (2004), no. 3, 293–334. MR 2060478
- van Saarloos, W. (2003). Front propagation into unstable states, Phys. Rep. 386, 29.
- Alain-Sol Sznitman, Slowdown estimates and central limit theorem for random walks in random environment, J. Eur. Math. Soc. (JEMS) 2 (2000), no. 2, 93–143. MR 1763302, DOI 10.1007/s100970050001
- Alain-Sol Sznitman and Martin Zerner, A law of large numbers for random walks in random environment, Ann. Probab. 27 (1999), no. 4, 1851–1869. MR 1742891, DOI 10.1214/aop/1022874818
- Hermann Thorisson, Coupling, stationarity, and regeneration, Probability and its Applications (New York), Springer-Verlag, New York, 2000. MR 1741181, DOI 10.1007/978-1-4612-1236-2
Additional Information
- Francis Comets
- Affiliation: Laboratoire de Probabilités et Modèles Aléatoires, Université Paris 7- Denis Diderot, 2, Place Jussieu, F-75251 Paris Cedex 05, France
- Email: comets@math.jussieu.fr
- Jeremy Quastel
- Affiliation: Departments of Mathematics and Statistics, University of Toronto, 40 St. George Street, Toronto, Ontario, Canada M5S 1L2
- MR Author ID: 322635
- Email: quastel@math.toronto.edu
- Alejandro F. Ramírez
- Affiliation: Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Email: aramirez@mat.puc.cl
- Received by editor(s): April 26, 2007
- Received by editor(s) in revised form: July 30, 2008
- Published electronically: May 1, 2009
- Additional Notes: The first author was partially supported by CNRS, UMR 7599 and by ECOS-Conicyt grant CO5EO2
The second author was partially supported by NSERC, Canada
The third author was partially supported by Fondo Nacional de Desarrollo Científico y Tecnológico grant 1060738, by Iniciativa Científica Milenio P04-069-F, and by ECOS-Conicyt grant CO5EO2 - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 6165-6189
- MSC (2000): Primary 82C22, 82C41; Secondary 82C24, 60K05, 60G50
- DOI: https://doi.org/10.1090/S0002-9947-09-04889-2
- MathSciNet review: 2529928