Mixed boundary-value problems for Maxwell’s equations
HTML articles powered by AMS MathViewer
- by Marius Mitrea
- Trans. Amer. Math. Soc. 362 (2010), 117-143
- DOI: https://doi.org/10.1090/S0002-9947-09-04561-9
- Published electronically: August 13, 2009
- PDF | Request permission
Abstract:
We study the Maxwell system with mixed boundary conditions in a Lipschitz domain $\Omega$ in $\mathbb {R}^3$. It is assumed that two disjoint, relatively open subsets $\Sigma ^e$, $\Sigma ^h$ of $\partial \Omega$ such that $\overline {\Sigma ^e}\cap \overline {\Sigma ^h}=\partial \Sigma ^e=\partial \Sigma ^h$ have been fixed, and one prescribes the tangential components of the electric and magnetic fields on $\Sigma ^e$ and $\Sigma ^h$, respectively. Under suitable geometric assumptions on $\partial \Omega$, $\Sigma ^e$ and $\Sigma ^h$, we prove that this boundary value problem is well-posed when $L^p$-estimates for the nontangential maximal function are sought, with $p$ near $2$. A higher-dimensional version of this result is established as well, in the language of differential forms. This extends earlier work by R. Brown and by the author and collaborators.References
- Ana Alonso Rodríguez and Mirco Raffetto, Unique solvability for electromagnetic boundary value problems in the presence of partly lossy inhomogeneous anisotropic media and mixed boundary conditions, Math. Models Methods Appl. Sci. 13 (2003), no. 4, 597–611. MR 1976304, DOI 10.1142/S0218202503002672
- Garth A. Baker and Józef Dodziuk, Stability of spectra of Hodge-de Rham Laplacians, Math. Z. 224 (1997), no. 3, 327–345. MR 1439194, DOI 10.1007/PL00004293
- Russell Brown, The mixed problem for Laplace’s equation in a class of Lipschitz domains, Comm. Partial Differential Equations 19 (1994), no. 7-8, 1217–1233. MR 1284808, DOI 10.1080/03605309408821052
- F. Cakoni and D. Colton, Mixed boundary value problems in inverse electromagnetic scattering, Proceedings of the 6th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, Tsepelovo, 2003.
- Fioralba Cakoni, David Colton, and Peter Monk, The electromagnetic inverse-scattering problem for partly coated Lipschitz domains, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 4, 661–682. MR 2079799, DOI 10.1017/S0308210500003413
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- Björn E. J. Dahlberg and Carlos E. Kenig, Hardy spaces and the Neumann problem in $L^p$ for Laplace’s equation in Lipschitz domains, Ann. of Math. (2) 125 (1987), no. 3, 437–465. MR 890159, DOI 10.2307/1971407
- E. B. Fabes, M. Jodeit Jr., and N. M. Rivière, Potential techniques for boundary value problems on $C^{1}$-domains, Acta Math. 141 (1978), no. 3-4, 165–186. MR 501367, DOI 10.1007/BF02545747
- Paolo Fernandes and Gianni Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci. 7 (1997), no. 7, 957–991. MR 1479578, DOI 10.1142/S0218202597000487
- H. G. Garnir, Les problèmes aux limites de la physique mathématique. Introduction à leur étude générale, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Bd. 23, Birkhäuser Verlag, Basel-Stuttgart, 1958 (French). MR 0104054
- Steve Hofmann, On singular integrals of Calderón-type in $\textbf {R}^n$, and BMO, Rev. Mat. Iberoamericana 10 (1994), no. 3, 467–505. MR 1308701, DOI 10.4171/RMI/159
- Björn Jawerth and Marius Mitrea, Higher-dimensional electromagnetic scattering theory on $C^1$ and Lipschitz domains, Amer. J. Math. 117 (1995), no. 4, 929–963. MR 1342836, DOI 10.2307/2374954
- F. Jochmann, Existence of weak solutions of the drift diffusion model coupled with Maxwell’s equations, J. Math. Anal. Appl. 204 (1996), no. 3, 655–676. MR 1422765, DOI 10.1006/jmaa.1996.0460
- F. Jochmann, Uniqueness and regularity for the two-dimensional drift-diffusion model for semiconductors coupled with Maxwell’s equations, J. Differential Equations 147 (1998), no. 2, 242–270. MR 1634016, DOI 10.1006/jdeq.1998.3449
- Frank Jochmann, Regularity of weak solutions of Maxwell’s equations with mixed boundary-conditions, Math. Methods Appl. Sci. 22 (1999), no. 14, 1255–1274. MR 1710708, DOI 10.1002/(SICI)1099-1476(19990925)22:14<1255::AID-MMA83>3.0.CO;2-N
- Carlos E. Kenig, Recent progress on boundary value problems on Lipschitz domains, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 175–205. MR 812291, DOI 10.1090/pspum/043/812291
- Dorina Mitrea and Marius Mitrea, Finite energy solutions of Maxwell’s equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds, J. Funct. Anal. 190 (2002), no. 2, 339–417. MR 1899489, DOI 10.1006/jfan.2001.3870
- Dorina Mitrea, Marius Mitrea, and Jill Pipher, Vector potential theory on nonsmooth domains in $\textbf {R}^3$ and applications to electromagnetic scattering, J. Fourier Anal. Appl. 3 (1997), no. 2, 131–192. MR 1438894, DOI 10.1007/s00041-001-4053-0
- Dorina Mitrea, Marius Mitrea, and Michael Taylor, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, Mem. Amer. Math. Soc. 150 (2001), no. 713, x+120. MR 1809655, DOI 10.1090/memo/0713
- Marius Mitrea, The method of layer potentials in electromagnetic scattering theory on nonsmooth domains, Duke Math. J. 77 (1995), no. 1, 111–133. MR 1317629, DOI 10.1215/S0012-7094-95-07705-9
- Marius Mitrea and Mathew Muether, An integration by parts formula in submanifolds of positive codimension, Math. Methods Appl. Sci. 27 (2004), no. 14, 1711–1723. MR 2089158, DOI 10.1002/mma.526
- Jeffery D. Sykes and Russell M. Brown, The mixed boundary problem in $L^p$ and Hardy spaces for Laplace’s equation on a Lipschitz domain, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000) Contemp. Math., vol. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 1–18. MR 1840423, DOI 10.1090/conm/277/04536
- Michael E. Taylor, Partial differential equations. II, Applied Mathematical Sciences, vol. 116, Springer-Verlag, New York, 1996. Qualitative studies of linear equations. MR 1395149, DOI 10.1007/978-1-4757-4187-2
Bibliographic Information
- Marius Mitrea
- Affiliation: Department of Mathematics, University of Missouri at Columbia, Columbia, Missouri 65211
- MR Author ID: 341602
- ORCID: 0000-0002-5195-5953
- Email: mitream@missouri.edu
- Received by editor(s): June 21, 2005
- Received by editor(s) in revised form: April 12, 2007
- Published electronically: August 13, 2009
- Additional Notes: The author was supported in part by the NSF and the University of Missouri Office of Research
- © Copyright 2009 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 117-143
- MSC (2000): Primary 35J55, 78A30, 42B20; Secondary 35F15, 35C15, 78M15
- DOI: https://doi.org/10.1090/S0002-9947-09-04561-9
- MathSciNet review: 2550146