Almost bi-Lipschitz embeddings and almost homogeneous sets
HTML articles powered by AMS MathViewer
- by Eric J. Olson and James C. Robinson
- Trans. Amer. Math. Soc. 362 (2010), 145-168
- DOI: https://doi.org/10.1090/S0002-9947-09-04604-2
- Published electronically: August 17, 2009
- PDF | Request permission
Abstract:
This paper is concerned with embeddings of homogeneous spaces into Euclidean spaces. We show that any homogeneous metric space can be embedded into a Hilbert space using an almost bi-Lipschitz mapping (bi-Lipschitz to within logarithmic corrections). The image of this set is no longer homogeneous, but âalmost homogeneousâ. We therefore study the problem of embedding an almost homogeneous subset $X$ of a Hilbert space $H$ into a finite-dimensional Euclidean space. We show that if $X$ is a compact subset of a Hilbert space and $X-X$ is almost homogeneous, then, for $N$ sufficiently large, a prevalent set of linear maps from $X$ into $\mathbb {R}^N$ are almost bi-Lipschitz between $X$ and its image.References
- Patrice Assouad, Plongements lipschitziens dans $\textbf {R}^{n}$, Bull. Soc. Math. France 111 (1983), no. 4, 429â448 (French, with English summary). MR 763553
- A. Ben-Artzi, A. Eden, C. Foias, and B. Nicolaenko, Hölder continuity for the inverse of Mañéâs projection, J. Math. Anal. Appl. 178 (1993), no. 1, 22â29. MR 1231724, DOI 10.1006/jmaa.1993.1288
- M.G. Bouligand, Ensumbles Impropres et Nombre Dimensionnel, Bull. Sci. Math. 52 (1928), 320â344, 361â376.
- C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana Univ. Math. J. 45 (1996), no. 3, 603â616. MR 1422098, DOI 10.1512/iumj.1996.45.1326
- Peter K. Friz and James C. Robinson, Smooth attractors have zero âthicknessâ, J. Math. Anal. Appl. 240 (1999), no. 1, 37â46. MR 1728206, DOI 10.1006/jmaa.1999.6569
- Piotr HajĆasz, Whitneyâs example by way of Assouadâs embedding, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3463â3467. MR 1991757, DOI 10.1090/S0002-9939-03-06913-2
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Juha Heinonen, Geometric embeddings of metric spaces, Report. University of JyvÀskylÀ Department of Mathematics and Statistics, vol. 90, University of JyvÀskylÀ, JyvÀskylÀ, 2003. MR 2014506
- Brian R. Hunt, Tim Sauer, and James A. Yorke, Prevalence: a translation-invariant âalmost everyâ on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217â238. MR 1161274, DOI 10.1090/S0273-0979-1992-00328-2
- Brian R. Hunt and Vadim Yu. Kaloshin, How projections affect the dimension spectrum of fractal measures, Nonlinearity 10 (1997), no. 5, 1031â1046. MR 1473372, DOI 10.1088/0951-7715/10/5/002
- Brian R. Hunt and Vadim Yu. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity 12 (1999), no. 5, 1263â1275. MR 1710097, DOI 10.1088/0951-7715/12/5/303
- Urs Lang and Conrad Plaut, Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata 87 (2001), no. 1-3, 285â307. MR 1866853, DOI 10.1023/A:1012093209450
- Tomi J. Laakso, Plane with $A_\infty$-weighted metric not bi-Lipschitz embeddable to ${\Bbb R}^N$, Bull. London Math. Soc. 34 (2002), no. 6, 667â676. MR 1924353, DOI 10.1112/S0024609302001200
- Jouni Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), no. 1, 23â76. MR 1608518
- Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 230â242. MR 654892
- H. Movahedi-Lankarani and R. Wells, On bi-Lipschitz embeddings, Port. Math. (N.S.) 62 (2005), no. 3, 247â268. MR 2171672
- Eric Olson, Bouligand dimension and almost Lipschitz embeddings, Pacific J. Math. 202 (2002), no. 2, 459â474. MR 1888175, DOI 10.2140/pjm.2002.202.459
- E. Pinto de Moura and J.C. Robinson, Lipschitz deviation and the regularity of embeddings of finite-dimensional sets, submitted.
- E. Pinto de Moura and J.C. Robinson, Orthogonal sequences and regularity of embeddings into finite-dimensionsl spaces, submitted.
- J.C. Robinson, Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces, Nonlinearity 22 (2009) 711â728.
- Tim Sauer, James A. Yorke, and Martin Casdagli, Embedology, J. Statist. Phys. 65 (1991), no. 3-4, 579â616. MR 1137425, DOI 10.1007/BF01053745
- Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about $A_\infty$-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337â410. MR 1402671, DOI 10.4171/RMI/201
Bibliographic Information
- Eric J. Olson
- Affiliation: Department of Mathematics/084, University of Nevada, Reno, Nevada 89557
- Email: ejolson@unr.edu
- James C. Robinson
- Affiliation: Mathematical Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Email: j.c.robinson@warwick.ac.uk
- Received by editor(s): September 15, 2005
- Received by editor(s) in revised form: May 27, 2007
- Published electronically: August 17, 2009
- Additional Notes: The second author was a Royal Society University Research Fellow when this paper was written, and he would like to thank the Society for all their support. Both authors would like to thank Professor Juha Heinonen for his helpful advice, and Eleonora Pinto de Moura for a number of corrections after her close reading of the manuscript.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 145-168
- MSC (2000): Primary 54F45, 57N35
- DOI: https://doi.org/10.1090/S0002-9947-09-04604-2
- MathSciNet review: 2550147