Nonautonomous Kolmogorov parabolic equations with unbounded coefficients
HTML articles powered by AMS MathViewer
- by Markus Kunze, Luca Lorenzi and Alessandra Lunardi
- Trans. Amer. Math. Soc. 362 (2010), 169-198
- DOI: https://doi.org/10.1090/S0002-9947-09-04738-2
- Published electronically: August 3, 2009
- PDF | Request permission
Abstract:
We study a class of elliptic operators $A$ with unbounded coefficients defined in $I\times \mathbb {R}^d$ for some unbounded interval $I\subset \mathbb {R}$. We prove that, for any $s\in I$, the Cauchy problem $u(s,\cdot )=f\in C_b(\mathbb {R}^d)$ for the parabolic equation $D_tu=Au$ admits a unique bounded classical solution $u$. This allows to associate an evolution family $\{G(t,s)\}$ with $A$, in a natural way. We study the main properties of this evolution family and prove gradient estimates for the function $G(t,s)f$. Under suitable assumptions, we show that there exists an evolution system of measures for $\{G(t,s)\}$ and we study the first properties of the extension of $G(t,s)$ to the $L^p$-spaces with respect to such measures.References
- Paolo Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations 1 (1988), no. 4, 433–457. MR 945820
- Serge Bernstein, Sur la généralisation du problème de Dirichlet, Math. Ann. 62 (1906), no. 2, 253–271 (French). MR 1511375, DOI 10.1007/BF01449980
- Luca Lorenzi and Marcello Bertoldi, Analytical methods for Markov semigroups, Pure and Applied Mathematics (Boca Raton), vol. 283, Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2313847
- Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, Mathematical Surveys and Monographs, vol. 70, American Mathematical Society, Providence, RI, 1999. MR 1707332, DOI 10.1090/surv/070
- Giuseppe Da Prato and Michael Röckner, A note on evolution systems of measures for time-dependent stochastic differential equations, Seminar on Stochastic Analysis, Random Fields and Applications V, Progr. Probab., vol. 59, Birkhäuser, Basel, 2008, pp. 115–122. MR 2401953, DOI 10.1007/978-3-7643-8458-6_{7}
- Giuseppe Da Prato and Alessandra Lunardi, Ornstein-Uhlenbeck operators with time periodic coefficients, J. Evol. Equ. 7 (2007), no. 4, 587–614. MR 2369672, DOI 10.1007/s00028-007-0321-z
- E. B. Dynkin, Markov processes. Vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Band 121, vol. 122, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. MR 0193671
- S. Fornaro, G. Metafune, and E. Priola, Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Differential Equations 205 (2004), no. 2, 329–353. MR 2092861, DOI 10.1016/j.jde.2004.06.019
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Matthias Geissert and Alessandra Lunardi, Invariant measures and maximal $L^2$ regularity for nonautonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc. (2) 77 (2008), no. 3, 719–740. MR 2418301, DOI 10.1112/jlms/jdn009
- M. Geissert, A. Lunardi, Asymptotic behavior in nonautonomous Ornstein-Uhlenbeck equations, J. London Math. Soc. (2) 79 (2009), no 1, 85–106.
- Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940, DOI 10.1007/978-1-4612-0949-2
- Hiroshi Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1997. Reprint of the 1990 original. MR 1472487
- Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). Translated from the Russian by S. Smith. MR 0241822
- Gary M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1465184, DOI 10.1142/3302
- G. Metafune, D. Pallara, and M. Wacker, Feller semigroups on $\mathbf R^N$, Semigroup Forum 65 (2002), no. 2, 159–205. MR 1911723, DOI 10.1007/s002330010129
- D.W. Strook, S.R.S. Varadhan, Multidimensional diffusion processes, Classics in Mathematics, Springer-Verlag, Berlin, 2006.
Bibliographic Information
- Markus Kunze
- Affiliation: Graduiertenkolleg 1100, Ulm University, Helmholtzstrasse 18, 89069 Ulm, Germany
- Address at time of publication: Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
- MR Author ID: 357041
- Email: markus.kunze@uni-ulm.de, M.C.Kunze@tudelft.nl
- Luca Lorenzi
- Affiliation: Dipartimento di Matematica, Università degli Studi di Parma, Viale G.P. Usberti, 53/A, I-43100 Parma, Italy
- MR Author ID: 649239
- Email: luca.lorenzi@unipr.it
- Alessandra Lunardi
- Affiliation: Dipartimento di Matematica, Università degli Studi di Parma, Viale G.P. Usberti, 53/A, I-43100 Parma, Italy
- MR Author ID: 116935
- Email: alessandra.lunardi@unipr.it
- Received by editor(s): July 5, 2007
- Published electronically: August 3, 2009
- Additional Notes: This work was supported by the M.I.U.R. research projects Prin 2004 and 2006 “Kolmogorov equations”
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 169-198
- MSC (2000): Primary 35K10, 35K15, 37L40
- DOI: https://doi.org/10.1090/S0002-9947-09-04738-2
- MathSciNet review: 2550148