A group of non-uniform exponential growth locally isomorphic to $IMG(z^2+i)$
HTML articles powered by AMS MathViewer
- by Volodymyr Nekrashevych
- Trans. Amer. Math. Soc. 362 (2010), 389-398
- DOI: https://doi.org/10.1090/S0002-9947-09-04825-9
- Published electronically: July 17, 2009
- PDF | Request permission
Abstract:
We prove that a sequence of marked three-generated groups isomorphic to the iterated monodromy group of $z^2+i$ converges to a group of non-uniform exponential growth, which is an extension of the infinite direct sum of cyclic groups of order 4 by a Grigorchuk group.References
- Laurent Bartholdi, A Wilson group of non-uniformly exponential growth, C. R. Math. Acad. Sci. Paris 336 (2003), no. 7, 549–554 (English, with English and French summaries). MR 1981466, DOI 10.1016/S1631-073X(03)00131-6
- Laurent Bartholdi, Rostislav Grigorchuk, and Volodymyr Nekrashevych, From fractal groups to fractal sets, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, pp. 25–118. MR 2091700
- Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Acta Math. 197 (2006), no. 1, 1–51. MR 2285317, DOI 10.1007/s11511-006-0007-3
- Kai-Uwe Bux and Rodrigo Pérez, On the growth of iterated monodromy groups, Topological and asymptotic aspects of group theory, Contemp. Math., vol. 394, Amer. Math. Soc., Providence, RI, 2006, pp. 61–76. MR 2216706, DOI 10.1090/conm/394/07434
- Christophe Champetier, L’espace des groupes de type fini, Topology 39 (2000), no. 4, 657–680 (French, with English summary). MR 1760424, DOI 10.1016/S0040-9383(98)00063-9
- Anna Erschler, Boundary behavior for groups of subexponential growth, Ann. of Math. (2) 160 (2004), no. 3, 1183–1210. MR 2144977, DOI 10.4007/annals.2004.160.1183
- Anna Erschler, Not residually finite groups of intermediate growth, commensurability and non-geometricity, J. Algebra 272 (2004), no. 1, 154–172. MR 2029029, DOI 10.1016/j.jalgebra.2002.11.005
- A. G. Èrshler, On the degrees of growth of finitely generated groups, Funktsional. Anal. i Prilozhen. 39 (2005), no. 4, 86–89 (Russian); English transl., Funct. Anal. Appl. 39 (2005), no. 4, 317–320. MR 2197519, DOI 10.1007/s10688-005-0055-z
- Anna Erschler, Automatically presented groups, Groups Geom. Dyn. 1 (2007), no. 1, 47–59. MR 2294247, DOI 10.4171/GGD/3
- John Erik Fornæss and Nessim Sibony, Critically finite rational maps on $\textbf {P}^2$, The Madison Symposium on Complex Analysis (Madison, WI, 1991) Contemp. Math., vol. 137, Amer. Math. Soc., Providence, RI, 1992, pp. 245–260. MR 1190986, DOI 10.1090/conm/137/1190986
- R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985 (Russian). MR 764305
- R. I. Grigorchuk, Superamenability and the occurrence problem of free semigroups, Funktsional. Anal. i Prilozhen. 21 (1987), no. 1, 74–75 (Russian). MR 888020
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
- Pierre de la Harpe, Uniform growth in groups of exponential growth, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), 2002, pp. 1–17. MR 1950882, DOI 10.1023/A:1021273024728
- Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR 2162164, DOI 10.1090/surv/117
- Volodymyr Nekrashevych, A minimal Cantor set in the space of 3-generated groups, Geom. Dedicata 124 (2007), 153–190. MR 2318543, DOI 10.1007/s10711-006-9118-4
- V. Nekrashevych and S. Sidki, Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms, Groups: topological, combinatorial and arithmetic aspects, London Math. Soc. Lecture Note Ser., vol. 311, Cambridge Univ. Press, Cambridge, 2004, pp. 375–404. MR 2073355, DOI 10.1017/CBO9780511550706.014
- G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. I: Series, integral calculus, theory of functions, Die Grundlehren der mathematischen Wissenschaften, Band 193, Springer-Verlag, New York-Berlin, 1972. Translated from the German by D. Aeppli. MR 0344042
- John S. Wilson, Further groups that do not have uniformly exponential growth, J. Algebra 279 (2004), no. 1, 292–301. MR 2078400, DOI 10.1016/j.jalgebra.2004.01.002
- John S. Wilson, On exponential growth and uniformly exponential growth for groups, Invent. Math. 155 (2004), no. 2, 287–303. MR 2031429, DOI 10.1007/s00222-003-0321-8
Bibliographic Information
- Volodymyr Nekrashevych
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- MR Author ID: 645299
- Email: nekrash@math.tamu.edu
- Received by editor(s): February 25, 2008
- Published electronically: July 17, 2009
- Additional Notes: This material is based upon work supported by the National Science Foundation under Grant DMS-0605019.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 389-398
- MSC (2000): Primary 20F69, 20E08; Secondary 37F20
- DOI: https://doi.org/10.1090/S0002-9947-09-04825-9
- MathSciNet review: 2550156