Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II
HTML articles powered by AMS MathViewer
- by Wilhelm Schlag, Avy Soffer and Wolfgang Staubach
- Trans. Amer. Math. Soc. 362 (2010), 289-318
- DOI: https://doi.org/10.1090/S0002-9947-09-04900-9
- Published electronically: August 4, 2009
- PDF | Request permission
Abstract:
Let $\Omega \subset \mathbb {R}^N$ be a compact imbedded Riemannian manifold of dimension $d\ge 1$ and define the $(d+1)$-dimensional Riemannian manifold $\mathcal {M}:=\{(x,r(x)\omega )\::\: x\in \mathbb {R}, \omega \in \Omega \}$ with $r>0$ and smooth, and the natural metric $ds^2=(1+r’(x)^2)dx^2+r^2(x)ds_\Omega ^2$. We require that $\mathcal {M}$ has conical ends: $r(x)=|x| + O(x^{-1})$ as $x\to \pm \infty$. The Hamiltonian flow on such manifolds always exhibits trapping. Dispersive estimates for the Schrödinger evolution $e^{it\Delta _\mathcal {M}}$ and the wave evolution $e^{it\sqrt {-\Delta _\mathcal {M}}}$ are obtained for data of the form $f(x,\omega )=Y_n(\omega ) u(x)$, where $Y_n$ are eigenfunctions of $-\Delta _\Omega$ with eigenvalues $\mu _n^2$. In this paper we discuss all cases $d+n>1$. If $n\ne 0$ there is the following accelerated local decay estimate: with \[ 0< \sigma = \sqrt {2\mu _n^2+(d-1)^2/4}-\frac {d-1}{2} \] and all $t\ge 1$, \[ \Vert w_\sigma e^{it\Delta _{\mathcal {M}}} Y_nf \Vert _{L^{\infty }(\mathcal {M})} \le C(n,\mathcal {M},\sigma ) t^{-\frac {d+1}{2}-\sigma }\Vert w_\sigma ^{-1} f\Vert _{L^1(\mathcal {M})}, \] where $w_\sigma (x)=\langle x\rangle ^{-\sigma }$, and similarly for the wave evolution. Our method combines two main ingredients:
(A) A detailed scattering analysis of Schrödinger operators of the form $-\partial _\xi ^2 + (\nu ^2-\frac 14)\langle \xi \rangle ^{-2}+U(\xi )$ on the line where $U$ is real-valued and smooth with $U^{(\ell )}(\xi )=O(\xi ^{-3-\ell })$ for all $\ell \ge 0$ as $\xi \to \pm \infty$ and $\nu >0$. In particular, we introduce the notion of a zero energy resonance for this class and derive an asymptotic expansion of the Wronskian between the outgoing Jost solutions as the energy tends to zero. In particular, the division into Part I and Part II can be explained by the former being resonant at zero energy, where the present paper deals with the nonresonant case.
(B) Estimation of oscillatory integrals by (non)stationary phase.
References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; John Wiley & Sons, Inc., New York, 1984. Reprint of the 1972 edition; Selected Government Publications. MR 757537
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, DOI 10.1007/BF01896020
- Nicolas Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), no. 1, 1–29 (French). MR 1618254, DOI 10.1007/BF02392877
- N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), no. 3, 569–605. MR 2058384
- N. Burq, P. Gérard, and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), no. 1, 187–223 (English, with English and French summaries). MR 2142336, DOI 10.1007/s00222-004-0388-x
- Hans Christianson, Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal. 246 (2007), no. 2, 145–195. MR 2321040, DOI 10.1016/j.jfa.2006.09.012
- H. Christianson, Dispersive estimates for manifolds with one trapped orbit, preprint 2007.
- Hans Christianson, Cutoff resolvent estimates and the semilinear Schrödinger equation, Proc. Amer. Math. Soc. 136 (2008), no. 10, 3513–3520. MR 2415035, DOI 10.1090/S0002-9939-08-09290-3
- Walter Craig, Thomas Kappeler, and Walter Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), no. 8, 769–860. MR 1361016, DOI 10.1002/cpa.3160480802
- P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), no. 2, 121–251. MR 512420, DOI 10.1002/cpa.3160320202
- Shin-ichi Doi, Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318 (2000), no. 2, 355–389. MR 1795567, DOI 10.1007/s002080000128
- C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), no. 3, 391–421. MR 874901
- P. Gérard, Nonlinear Schrödinger equations on compact manifolds, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 121–139. MR 2185741
- Andrew Hassell, Terence Tao, and Jared Wunsch, A Strichartz inequality for the Schrödinger equation on nontrapping asymptotically conic manifolds, Comm. Partial Differential Equations 30 (2005), no. 1-3, 157–205. MR 2131050, DOI 10.1081/PDE-200044482
- Andrew Hassell, Terence Tao, and Jared Wunsch, Sharp Strichartz estimates on nontrapping asymptotically conic manifolds, Amer. J. Math. 128 (2006), no. 4, 963–1024. MR 2251591
- Stéphane Nonnenmacher and Maciej Zworski, Quantum decay rates in chaotic scattering, Séminaire: Équations aux Dérivées Partielles. 2005–2006, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2006, pp. Exp. No. XXII, 8. MR 2276087
- Luc Robbiano and Claude Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.) 101-102 (2005), vi+208 (English, with English and French summaries). MR 2193021, DOI 10.24033/msmf.414
- I. Rodnianski and T. Tao, Longtime decay estimates for the Schrödinger equation on manifolds, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 223–253. MR 2333213
- W. Schlag, Dispersive estimates for Schrödinger operators in dimension two, Comm. Math. Phys. 257 (2005), no. 1, 87–117. MR 2163570, DOI 10.1007/s00220-004-1262-9
- W. Schlag, Dispersive estimates for Schrödinger operators: a survey, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 255–285. MR 2333215
- W. Schlag, A. Soffer & W. Staubach, Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part I, to appear in Trans. Amer. Math. Soc.
- Hart F. Smith and Christopher D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000), no. 11-12, 2171–2183. MR 1789924, DOI 10.1080/03605300008821581
- Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337–1372. MR 1924470, DOI 10.1081/PDE-120005841
- Daniel Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math. 130 (2008), no. 3, 571–634. MR 2418923, DOI 10.1353/ajm.0.0000
Bibliographic Information
- Wilhelm Schlag
- Affiliation: Department of Mathematics, University of Chicago, 5734 South University Avenue, Chicago, Illinois 60637
- MR Author ID: 313635
- Email: schlag@math.uchicago.edu
- Avy Soffer
- Affiliation: Department of Mathematics, Rutgers University, 110 Freylinghuysen Road, Piscataway, New Jersey 08854
- Email: soffer@math.rutgers.edu
- Wolfgang Staubach
- Affiliation: Department of Mathematics, Colin Maclaurin Building, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland
- MR Author ID: 675031
- Email: W.Staubach@hw.ac.uk
- Received by editor(s): December 14, 2007
- Published electronically: August 4, 2009
- Additional Notes: The first author was partly supported by the National Science Foundation grant DMS-0617854.
The second author was partly supported by the National Science Foundation grant DMS-0501043. - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 289-318
- MSC (2000): Primary 35J10
- DOI: https://doi.org/10.1090/S0002-9947-09-04900-9
- MathSciNet review: 2550152