Theta functions on the Kodaira–Thurston manifold
HTML articles powered by AMS MathViewer
- by William D. Kirwin and Alejandro Uribe
- Trans. Amer. Math. Soc. 362 (2010), 897-932
- DOI: https://doi.org/10.1090/S0002-9947-09-04852-1
- Published electronically: August 17, 2009
- PDF | Request permission
Abstract:
The Kodaira–Thurston manifold $M$ is a compact, $4$-dimensional nilmanifold which is symplectic and complex but not Kähler. We describe a construction of $\vartheta$-functions associated to $M$, which parallels the classical theory of $\vartheta$-functions associated to the torus (from the point of view of representation theory and geometry), and which yields pseudoperiodic complex-valued functions on $\mathbb {R}^4.$
There exists a three-step nilpotent Lie group $\widetilde {G}$ which acts transitively on the Kodaira–Thurston manifold and on the universal cover of $M$ in a Hamiltonian fashion. The $\vartheta$-functions discussed in this paper are intimately related to the representation theory of $\widetilde {G}$ in much the same way that the classical $\vartheta$-functions are related to the Heisenberg group. One aspect of our results is a connection between the representation theory of $\widetilde {G}$ and the existence of Lagrangian and special Lagrangian foliations and torus fibrations in $M$; in particular, we show that $\widetilde {G}$-invariant special Lagrangian foliations can be detected by a simple algebraic condition on certain subalgebras of the Lie algebra of $\widetilde {G}.$
Crucial to our generalization of $\vartheta$-functions is the spectrum of the Laplacian $\Delta$ acting on sections of certain line bundles over $M$. One corollary of our work is a verification of a theorem of Guillemin–Uribe describing the structure (in the semiclassical limit) of the low-lying spectrum of $\Delta$.
References
- L. Auslander and J. Brezin, Translation-invariant subspaces in $L^{2}$ of a compact nilmanifold. I, Invent. Math. 20 (1973), 1–14. MR 322100, DOI 10.1007/BF01405260
- Louis Auslander and Richard Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Mathematics, Vol. 436, Springer-Verlag, Berlin-New York, 1975. MR 0414785
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original. MR 2273508
- Jonathan Brezin, Harmonic analysis on nilmanifolds, Trans. Amer. Math. Soc. 150 (1970), 611–618. MR 279244, DOI 10.1090/S0002-9947-1970-0279244-3
- David Borthwick and Alejandro Uribe, Almost complex structures and geometric quantization, Math. Res. Lett. 3 (1996), no. 6, 845–861. MR 1426541, DOI 10.4310/MRL.1996.v3.n6.a12
- Laurent Charles and San Vũ Ngọc, Spectral asymptotics via the semiclassical Birkhoff normal form, Duke Math. J. 143 (2008), no. 3, 463–511. MR 2423760, DOI 10.1215/00127094-2008-026
- Paolo de Bartolomeis and Adriano Tomassini, On the Maslov index of Lagrangian submanifolds of generalized Calabi-Yau manifolds, Internat. J. Math. 17 (2006), no. 8, 921–947. MR 2261641, DOI 10.1142/S0129167X06003710
- Marisa Fernández, Mark J. Gotay, and Alfred Gray, Compact parallelizable four-dimensional symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1209–1212. MR 955011, DOI 10.1090/S0002-9939-1988-0955011-9
- Jan Gutowski, Stefan Ivanov, and George Papadopoulos, Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class, Asian J. Math. 7 (2003), no. 1, 39–79. MR 2015241, DOI 10.4310/AJM.2003.v7.n1.a4
- V. Guillemin and A. Uribe, The Laplace operator on the $n$th tensor power of a line bundle: eigenvalues which are uniformly bounded in $n$, Asymptotic Anal. 1 (1988), no. 2, 105–113. MR 950009
- Carl G. J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Regiomonti, Sumtibus fratrum Borntraeger, Königsberg, Germany, 1829, Reprinted in Gesammelte Mathematische Werke, Band. 1. Providence, RI: Amer. Math. Soc., pp. 97-239, 1969.
- A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. MR 2069175, DOI 10.1090/gsm/064
- K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751–798. MR 187255, DOI 10.2307/2373157
- Calvin C. Moore, Representations of solvable and nilpotent groups and harmonic analysis on nil and solvmanifolds, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 3–44. MR 0385001
- Shigeyuki Morita, Geometry of characteristic classes, Translations of Mathematical Monographs, vol. 199, American Mathematical Society, Providence, RI, 2001. Translated from the 1999 Japanese original; Iwanami Series in Modern Mathematics. MR 1826571, DOI 10.1090/mmono/199
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
- David Mumford, Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. With the collaboration of C. Musili, M. Nori, E. Previato and M. Stillman; Reprint of the 1983 edition. MR 2352717, DOI 10.1007/978-0-8176-4578-6
- David Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 742776, DOI 10.1007/978-0-8176-4578-6
- David Mumford, Tata lectures on theta. III, Progress in Mathematics, vol. 97, Birkhäuser Boston, Inc., Boston, MA, 1991. With the collaboration of Madhav Nori and Peter Norman. MR 1116553, DOI 10.1007/978-0-8176-4579-3
- Yuichi Nohara, Projective embeddings and Lagrangian fibrations of abelian varieties, Math. Ann. 333 (2005), no. 4, 741–757. MR 2195141, DOI 10.1007/s00208-005-0685-8
- Alexander Polishchuk, Abelian varieties, theta functions and the Fourier transform, Cambridge Tracts in Mathematics, vol. 153, Cambridge University Press, Cambridge, 2003. MR 1987784, DOI 10.1017/CBO9780511546532
- Leonard F. Richardson, Decomposition of the $L^{2}$-space of a general compact nilmanifold, Amer. J. Math. 93 (1971), 173–190. MR 284546, DOI 10.2307/2373456
- W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467–468. MR 402764, DOI 10.1090/S0002-9939-1976-0402764-6
- Adriano Tomassini and Luigi Vezzoni, On symplectic half-flat manifolds, Manuscripta Math. 125 (2008), no. 4, 515–530. MR 2392884, DOI 10.1007/s00229-007-0158-3
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
- Nicholas Woodhouse, Geometric quantization, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1980. MR 605306
Bibliographic Information
- William D. Kirwin
- Affiliation: Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Email: kirwin@mis.mpg.de
- Alejandro Uribe
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043
- MR Author ID: 176210
- ORCID: 0000-0002-1869-5272
- Email: uribe@umich.edu
- Received by editor(s): March 10, 2008
- Published electronically: August 17, 2009
- Additional Notes: The first author was supported in part by the Max Planck Institute for Mathematics in the Sciences (Leipzig).
The second author was supported in part by NSF Grant DMS-0401064. - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 897-932
- MSC (2000): Primary 53Dxx; Secondary 11F27, 43A30, 22E70
- DOI: https://doi.org/10.1090/S0002-9947-09-04852-1
- MathSciNet review: 2551510