Quasisymmetric structures on surfaces
HTML articles powered by AMS MathViewer
- by Kevin Wildrick PDF
- Trans. Amer. Math. Soc. 362 (2010), 623-659 Request permission
Abstract:
We show that a locally Ahlfors $2$-regular and locally linearly locally contractible metric surface is locally quasisymmetrically equivalent to the disk. We also discuss an application of this result to the problem of characterizing surfaces embedded in some Euclidean spaces that are locally bi-Lipschitz equivalent to a ball in the plane.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360
- Mario Bonk, Juha Heinonen, and Eero Saksman, The quasiconformal Jacobian problem, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 77–96. MR 2145057, DOI 10.1090/conm/355/06446
- Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. MR 1930885, DOI 10.1007/s00222-002-0233-z
- Mario Bonk and Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219–246. MR 2116315, DOI 10.2140/gt.2005.9.219
- Mario Bonk, Bruce Kleiner, and Sergiy Merenkov. Rigidity of Schottky sets. (to appear in Amer. J. Math.).
- Mario Bonk and Sergiy Merenkov. Quasisymmetric rigidity of Sierpinski carpets. (preprint).
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- Robert B. Burckel, An introduction to classical complex analysis. Vol. 1, Pure and Applied Mathematics, vol. 82, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 555733
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0348781
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Juha Heinonen, The branch set of a quasiregular mapping, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 691–700. MR 1957076
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747
- Juha Heinonen and Seppo Rickman, Geometric branched covers between generalized manifolds, Duke Math. J. 113 (2002), no. 3, 465–529. MR 1909607, DOI 10.1215/S0012-7094-02-11333-7
- Juha Heinonen and Dennis Sullivan, On the locally branched Euclidean metric gauge, Duke Math. J. 114 (2002), no. 1, 15–41. MR 1915034, DOI 10.1215/S0012-7094-02-11412-4
- John G. Hocking and Gail S. Young, Topology, 2nd ed., Dover Publications, Inc., New York, 1988. MR 1016814
- Riikka Korte, Geometric implications of the Poincaré inequality, Results Math. 50 (2007), no. 1-2, 93–107. MR 2313133, DOI 10.1007/s00025-006-0237-x
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- John M. Mackay, Existence of quasi-arcs, Proc. Amer. Math. Soc. 136 (2008), no. 11, 3975–3981. MR 2425738, DOI 10.1090/S0002-9939-08-09444-6
- Daniel Meyer, Quasisymmetric embedding of self similar surfaces and origami with rational maps, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 461–484. MR 1922201
- James R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. MR 0464128
- M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge, at the University Press, 1951. 2nd ed. MR 0044820
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- S. Semmes, Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), no. 2, 155–295. MR 1414889, DOI 10.1007/BF01587936
- Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR 666554
- Pekka Tukia, Spaces and arcs of bounded turning, Michigan Math. J. 43 (1996), no. 3, 559–584. MR 1420592, DOI 10.1307/mmj/1029005543
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- Jussi Väisälä, Quasi-Möbius maps, J. Analyse Math. 44 (1984/85), 218–234. MR 801295, DOI 10.1007/BF02790198
- K. Wildrick, Quasisymmetric parametrizations of two-dimensional metric planes, Proc. Lond. Math. Soc. (3) 97 (2008), no. 3, 783–812. MR 2448247, DOI 10.1112/plms/pdn023
Additional Information
- Kevin Wildrick
- Affiliation: Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, Michigan 48109-1043
- Address at time of publication: Department of Mathematics and Statistics, University of Jyväskylä, PL 35 MaD, 40014 Jyväskylän yliopisto, Finland
- MR Author ID: 843465
- Email: kewildri@jyu.fi
- Received by editor(s): July 5, 2007
- Published electronically: September 18, 2009
- Additional Notes: The author was partially supported by NSF grants DMS 0244421, DMS 0456940, and DMS 0602191.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 623-659
- MSC (2000): Primary 30C65
- DOI: https://doi.org/10.1090/S0002-9947-09-04861-2
- MathSciNet review: 2551500
Dedicated: In memoriam: Juha Heinonen (1960 - 2007)