On the cluster multiplication theorem for acyclic cluster algebras
HTML articles powered by AMS MathViewer
- by Fan Xu
- Trans. Amer. Math. Soc. 362 (2010), 753-776
- DOI: https://doi.org/10.1090/S0002-9947-09-04946-0
- Published electronically: September 14, 2009
- PDF | Request permission
Abstract:
Caldero and Keller, and Hubery have proved the cluster multiplication theorems for finite type and affine type. We generalize their results and prove the cluster multiplication theorem for arbitrary type using the 2–Calabi–Yau property and a property we call ‘higher order associativity’.References
- Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618. MR 2249625, DOI 10.1016/j.aim.2005.06.003
- Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595–616. MR 2250855, DOI 10.4171/CMH/65
- Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), no. 1, 169–211. MR 2385670, DOI 10.1007/s00222-008-0111-4
- Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 983–1009 (English, with English and French summaries). MR 2316979, DOI 10.1016/j.ansens.2006.09.003
- Philippe Caldero and Andrei Zelevinsky, Laurent expansions in cluster algebras via quiver representations, Mosc. Math. J. 6 (2006), no. 3, 411–429, 587 (English, with English and Russian summaries). MR 2274858, DOI 10.17323/1609-4514-2006-6-3-411-429
- Alexandru Dimca, Sheaves in topology, Universitext, Springer-Verlag, Berlin, 2004. MR 2050072, DOI 10.1007/978-3-642-18868-8
- G. Dupont, Cluster multiplication in stable tubes via generalized Chebyshev polynomials, arXiv: math/0801.3964.
- M. Ding, J. Xiao and F. Xu, Realizing Enveloping Algebras via Varieties of Modules, arXiv: math/0604560.
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Peter Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71. MR 607140
- James A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math. 120 (1995), no. 2, 361–377. MR 1329046, DOI 10.1007/BF01241133
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Semicanonical bases and preprojective algebras. II. A multiplication formula, Compos. Math. 143 (2007), no. 5, 1313–1334. MR 2360317, DOI 10.1112/S0010437X07002977
- A. Hubery, From triangulated categories to Lie algebras: A theorem of Peng and Xiao, Proceedings of the Workshop on Representation Theory of Algebras and related Topics (Quertaro, 2004), editors J. De la Peña and R. Bautista.
- A. Hubery, Acyclic cluster algebras via Ringel-Hall algebras, preprint.
- A. Hubery, Hall Polynomials for Affine Quivers, preprint.
- Dominic Joyce, Constructible functions on Artin stacks, J. London Math. Soc. (2) 74 (2006), no. 3, 583–606. MR 2286434, DOI 10.1112/S0024610706023180
- Bernhard Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581. MR 2184464
- G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421. MR 1088333, DOI 10.1090/S0894-0347-1991-1088333-2
- R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 361141, DOI 10.2307/1971080
- Robert Marsh, Markus Reineke, and Andrei Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171–4186. MR 1990581, DOI 10.1090/S0002-9947-03-03320-8
- Y. Palu, Cluster characters for $2$-Calabi-Yau triangulated categories, arXiv:math/0703540v1, to appear in Ann. Fourier.
- Nicola J. Richmond, A stratification for varieties of modules, Bull. London Math. Soc. 33 (2001), no. 5, 565–577. MR 1844554, DOI 10.1112/S0024609301008189
- Christine Riedtmann, Lie algebras generated by indecomposables, J. Algebra 170 (1994), no. 2, 526–546. MR 1302854, DOI 10.1006/jabr.1994.1351
- Claus Michael Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583–591. MR 1062796, DOI 10.1007/BF01231516
- Claus Michael Ringel, Green’s theorem on Hall algebras, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 185–245. MR 1388564
- Claus Michael Ringel, The preprojective algebra of a quiver, Algebras and modules, II (Geiranger, 1996) CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 467–480. MR 1648647
- Olivier Schiffmann, Canonical bases and moduli spaces of sheaves on curves, Invent. Math. 165 (2006), no. 3, 453–524. MR 2242625, DOI 10.1007/s00222-005-0495-3
- J. P. Serre, Espaces fibrés algébriques, Seminaire C. Chevalley 1958, 1–36.
- Bertrand Toën, Derived Hall algebras, Duke Math. J. 135 (2006), no. 3, 587–615. MR 2272977, DOI 10.1215/S0012-7094-06-13536-6
- Jie Xiao and Fan Xu, Hall algebras associated to triangulated categories, Duke Math. J. 143 (2008), no. 2, 357–373. MR 2420510, DOI 10.1215/00127094-2008-021
- J. Xiao, F. Xu, Green’s formula with $\mathbb {C}^{*}$-action and Caldero-Keller’s formula for cluster algebras, to appear in Prog. Math.
- J. Xiao, F. Xu, G. Zhang, Derived categories and Lie algebras, arXiv:math/0604564.
- Andrei Zelevinsky, Semicanonical basis generators of the cluster algebra of type $A^{(1)}_1$, Electron. J. Combin. 14 (2007), no. 1, Note 4, 5. MR 2285807, DOI 10.37236/1005
Bibliographic Information
- Fan Xu
- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Email: fanxu@mail.tsinghua.edu.cn
- Received by editor(s): November 15, 2007
- Published electronically: September 14, 2009
- Additional Notes: This research was partially supported by the NSF of China (No. 10631010)
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 753-776
- MSC (2000): Primary 16G20, 16G70; Secondary 14M99, 18E30
- DOI: https://doi.org/10.1090/S0002-9947-09-04946-0
- MathSciNet review: 2551505