On singular integral and martingale transforms
HTML articles powered by AMS MathViewer
- by Stefan Geiss, Stephen Montgomery-Smith and Eero Saksman
- Trans. Amer. Math. Soc. 362 (2010), 553-575
- DOI: https://doi.org/10.1090/S0002-9947-09-04953-8
- Published electronically: September 11, 2009
- PDF | Request permission
Abstract:
Linear equivalences of norms of vector-valued singular integral operators and vector-valued martingale transforms are studied. In particular, it is shown that the UMD-constant of a Banach space $X$ equals the norm of the real (or the imaginary) part of the Beurling-Ahlfors singular integral operator, acting on $L^p_X(\mathbf {R}^2)$ with $p\in (1,\infty ).$ Moreover, replacing equality by a linear equivalence, this is found to be a typical property of even multipliers. A corresponding result for odd multipliers and the Hilbert transform is given. As a corollary we obtain that the norm of the real part of the Beurling-Ahlfors operator equals $p^*-1$ with $p^*:= \max \{p, (p/(p-1))\}$, where the novelty is the lower bound.References
- Albert Baernstein II and Stephen J. Montgomery-Smith, Some conjectures about integral means of $\partial f$ and $\overline \partial f$, Complex analysis and differential equations (Uppsala, 1997) Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., vol. 64, Uppsala Univ., Uppsala, 1999, pp. 92–109. MR 1758918
- Rodrigo Bañuelos and Gang Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), no. 3, 575–600. MR 1370109, DOI 10.1215/S0012-7094-95-08020-X
- R. Bañuelos and P. J. Méndez-Hernández, Space-time Brownian motion and the Beurling-Ahlfors transform, Indiana Univ. Math. J. 52 (2003), no. 4, 981–990. MR 2001941, DOI 10.1512/iumj.2003.52.2218
- Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1329542
- J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), no. 2, 163–168. MR 727340, DOI 10.1007/BF02384306
- Jean Bourgain, Vector-valued singular integrals and the $H^1$-BMO duality, Probability theory and harmonic analysis (Cleveland, Ohio, 1983) Monogr. Textbooks Pure Appl. Math., vol. 98, Dekker, New York, 1986, pp. 1–19. MR 830227
- D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), no. 6, 997–1011. MR 632972
- D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 270–286. MR 730072
- D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), no. 3, 647–702. MR 744226
- Donald L. Burkholder, Explorations in martingale theory and its applications, École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 1–66. MR 1108183, DOI 10.1007/BFb0085167
- Donald L. Burkholder, Martingales and singular integrals in Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 233–269. MR 1863694, DOI 10.1016/S1874-5849(01)80008-5
- Ronald R. Coifman and Guido Weiss, Transference methods in analysis, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31, American Mathematical Society, Providence, R.I., 1976. MR 0481928
- M. Defant: Zur vektorwertigen Hilberttransformation, PhD thesis, Universität Kiel, 1986.
- Stefan Geiss, A counterexample concerning the relation between decoupling constants and UMD-constants, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1355–1375. MR 1458301, DOI 10.1090/S0002-9947-99-02093-0
- L. Grafakos: Classical and modern Fourier analysis, Pearson, 2004.
- Richard F. Gundy and Nicolas Th. Varopoulos, Les transformations de Riesz et les intégrales stochastiques, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 1, A13–A16 (French, with English summary). MR 545671
- Tuomas P. Hytönen, Aspects of probabilistic Littlewood-Paley theory in Banach spaces, Banach spaces and their applications in analysis, Walter de Gruyter, Berlin, 2007, pp. 343–355. MR 2374719
- Robert C. James, Super-reflexive Banach spaces, Canadian J. Math. 24 (1972), 896–904. MR 320713, DOI 10.4153/CJM-1972-089-7
- Karel de Leeuw, On $L_{p}$ multipliers, Ann. of Math. (2) 81 (1965), 364–379. MR 174937, DOI 10.2307/1970621
- B. Maurey: Système de Haar, Seminaire Maurey–Schwartz, Ecole Polytechnique, Paris, 1974–1975.
- Stefanie Petermichl and Alexander Volberg, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), no. 2, 281–305. MR 1894362, DOI 10.1215/S0012-9074-02-11223-X
- Albrecht Pietsch and Jörg Wenzel, Orthonormal systems and Banach space geometry, Encyclopedia of Mathematics and its Applications, vol. 70, Cambridge University Press, Cambridge, 1998. MR 1646056, DOI 10.1017/CBO9780511526145
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- A. Vol′berg and F. Nazarov, Heat extension of the Beurling operator and estimates for its norm, Algebra i Analiz 15 (2003), no. 4, 142–158 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 4, 563–573. MR 2068982, DOI 10.1090/S1061-0022-04-00822-2
- Lutz Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann. 319 (2001), no. 4, 735–758. MR 1825406, DOI 10.1007/PL00004457
Bibliographic Information
- Stefan Geiss
- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), 40014 Jyväskylä, Finland
- MR Author ID: 248903
- Email: geiss@maths.jyu.fi
- Stephen Montgomery-Smith
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Email: stephen@math.missouri.edu
- Eero Saksman
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FIN-00014 Helsinki, Finland
- MR Author ID: 315983
- Email: eero.saksman@helsinki.fi
- Received by editor(s): January 29, 2007
- Published electronically: September 11, 2009
- Additional Notes: The first and the last author are supported by Project #110599 of the Academy of Finland.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 553-575
- MSC (2000): Primary 60G46, 42B15; Secondary 42B20, 46B09, 46B20
- DOI: https://doi.org/10.1090/S0002-9947-09-04953-8
- MathSciNet review: 2551497