Topological Hochschild homology of twisted group algebras
HTML articles powered by AMS MathViewer
- by Daniel J. Vera
- Trans. Amer. Math. Soc. 362 (2010), 1113-1133
- DOI: https://doi.org/10.1090/S0002-9947-09-04572-3
- Published electronically: October 20, 2009
- PDF | Request permission
Abstract:
We show that the topological Hochschild homology spectrum of a twisted group algebra $\operatorname {THH}(A^{\tau }[G])$ is the Thom spectrum associated with a parametrized orthogonal spectrum $E(A,G)$. We then analyze the structure of the parametrized orthogonal spectrum $E(A,G)$ and show that it is locally trivial.References
- S. Araki, Coefficients of $M\!R$-theory, Preprint, Osaka City University, Mimeographed Notes.
- M. Bökstedt, Topological Hochschild homology, Preprint, Bielefeld University, 1985.
- M. Bökstedt, W. C. Hsiang, and I. Madsen, The cyclotomic trace and algebraic $K$-theory of spaces, Invent. Math. 111 (1993), no. 3, 465–539. MR 1202133, DOI 10.1007/BF01231296
- B. L. Feĭgin and B. L. Tsygan, Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 210–239. MR 923137, DOI 10.1007/BFb0078369
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125, DOI 10.1007/978-3-642-85844-4
- Lars Hesselholt, $K$-theory of truncated polynomial algebras, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 71–110. MR 2181821, DOI 10.1007/3-540-27855-9_{3}
- Lars Hesselholt and Ib Madsen, On the $K$-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997), no. 1, 29–101. MR 1410465, DOI 10.1016/0040-9383(96)00003-1
- Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208. MR 1695653, DOI 10.1090/S0894-0347-99-00320-3
- Jean-Louis Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970, DOI 10.1007/978-3-662-21739-9
- M. A. Mandell and J. P. May, Equivariant orthogonal spectra and $S$-modules, Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108. MR 1922205, DOI 10.1090/memo/0755
- J. P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer-Verlag, Berlin-New York, 1972. MR 0420610, DOI 10.1007/BFb0067491
- J. P. May and J. Sigurdsson, Parametrized homotopy theory, Mathematical Surveys and Monographs, vol. 132, American Mathematical Society, Providence, RI, 2006. MR 2271789, DOI 10.1090/surv/132
- Christian Schlichtkrull, The transfer map in topological Hochschild homology, J. Pure Appl. Algebra 133 (1998), no. 3, 289–316. MR 1654263, DOI 10.1016/S0022-4049(97)00117-5
Bibliographic Information
- Daniel J. Vera
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Received by editor(s): June 1, 2006
- Published electronically: October 20, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1113-1133
- MSC (2000): Primary 55-xx
- DOI: https://doi.org/10.1090/S0002-9947-09-04572-3
- MathSciNet review: 2563723