Snowballs are quasiballs
HTML articles powered by AMS MathViewer
- by Daniel Meyer
- Trans. Amer. Math. Soc. 362 (2010), 1247-1300
- DOI: https://doi.org/10.1090/S0002-9947-09-04635-2
- Published electronically: October 5, 2009
- PDF | Request permission
Abstract:
We introduce snowballs, which are compact sets in $\mathbb {R}^3$ homeomorphic to the unit ball. They are $3$-dimensional analogs of domains in the plane bounded by snowflake curves. For each snowball $\mathcal {B}$ a quasiconformal map $f\colon \mathbb {R}^3\to \mathbb {R}^3$ is constructed that maps $\mathcal {B}$ to the unit ball.References
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Christopher J. Bishop, A quasisymmetric surface with no rectifiable curves, Proc. Amer. Math. Soc. 127 (1999), no. 7, 2035–2040. MR 1610908, DOI 10.1090/S0002-9939-99-04900-X
- Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. MR 1930885, DOI 10.1007/s00222-002-0233-z
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155–234. MR 1301392, DOI 10.1007/BF02398434
- Constantin Carathéodory. Theory of functions of a complex variable. Vol. 2. Chelsea Publishing Company, New York, 1954.
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Finite subdivision rules, Conform. Geom. Dyn. 5 (2001), 153–196. MR 1875951, DOI 10.1090/S1088-4173-01-00055-8
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- G. David and T. Toro, Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann. 315 (1999), no. 4, 641–710. MR 1731465, DOI 10.1007/s002080050332
- Tobin A. Driscoll and Lloyd N. Trefethen, Schwarz-Christoffel mapping, Cambridge Monographs on Applied and Computational Mathematics, vol. 8, Cambridge University Press, Cambridge, 2002. MR 1908657, DOI 10.1017/CBO9780511546808
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI 10.1007/BF02392747
- Daniel Meyer, Quasisymmetric embedding of self similar surfaces and origami with rational maps, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 461–484. MR 1922201
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- Edwin E. Moise, Geometric topology in dimensions $2$ and $3$, Graduate Texts in Mathematics, Vol. 47, Springer-Verlag, New York-Heidelberg, 1977. MR 0488059, DOI 10.1007/978-1-4612-9906-6
- Steffen Rohde, Quasicircles modulo bilipschitz maps, Rev. Mat. Iberoamericana 17 (2001), no. 3, 643–659. MR 1900898, DOI 10.4171/RMI/307
- Pekka Tukia, The planar Schönflies theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 49–72. MR 595177, DOI 10.5186/aasfm.1980.0529
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- Jussi Väisälä, The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin, 1996) Banach Center Publ., vol. 48, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 55–118. MR 1709974
Bibliographic Information
- Daniel Meyer
- Affiliation: Department of Mathematics, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, FI-00014 University of Helsinki, Finland
- MR Author ID: 700302
- ORCID: 0000-0003-1881-8137
- Email: dmeyermail@gmail.com
- Received by editor(s): August 16, 2007
- Published electronically: October 5, 2009
- Additional Notes: This research was partially supported by an NSF postdoctoral fellowship and by NSF grant DMS-0244421.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1247-1300
- MSC (2000): Primary 30C65
- DOI: https://doi.org/10.1090/S0002-9947-09-04635-2
- MathSciNet review: 2563729