The Leech lattice $\Lambda$ and the Conway group $\cdot \mathrm {O}$ revisited
HTML articles powered by AMS MathViewer
- by John N. Bray and Robert T. Curtis
- Trans. Amer. Math. Soc. 362 (2010), 1351-1369
- DOI: https://doi.org/10.1090/S0002-9947-09-04726-6
- Published electronically: October 20, 2009
Abstract:
We give a new, concise definition of the Conway group $\cdot \mathrm {O}$ as follows. The Mathieu group $\mathrm {M}_{24}$ acts quintuply transitively on 24 letters and so acts transitively (but imprimitively) on the set of $\left ({24}\atop {4} \right )$ tetrads. We use this action to define a progenitor $P$ of shape $2^{\star \left ( 24 \atop 4 \right )}:\mathrm {M}_{24}$; that is, a free product of cyclic groups of order 2 extended by a group of permutations of the involutory generators. A simple lemma leads us directly to an easily described, short relator, and factoring $P$ by this relator results in $\cdot \mathrm {O}$. Consideration of the lowest dimension in which $\cdot \mathrm {O}$ can act faithfully produces Conway’s elements $\xi _T$ and the 24–dimensional real, orthogonal representation. The Leech lattice is obtained as the set of images under $\cdot \mathrm {O}$ of the integral vectors in ${\mathbb R}_{24}$.References
- Wieb Bosma and John Cannon. Handbook of \MAGMA Functions. Sydney (March 16, 1994).
- John N. Bray and Robert T. Curtis, Double coset enumeration of symmetrically generated groups, J. Group Theory 7 (2004), no. 2, 167–185. MR 2049015, DOI 10.1515/jgth.2004.002
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- J. H. Conway, A perfect group of order $8,315,553,613,086,720,000$ and the sporadic simple groups, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 398–400. MR 237634, DOI 10.1073/pnas.61.2.398
- J. H. Conway, A group of order $8,315,553,613,086,720,000$, Bull. London Math. Soc. 1 (1969), 79–88. MR 248216, DOI 10.1112/blms/1.1.79
- J. H. Conway, A characterisation of Leech’s lattice, Invent. Math. 7 (1969), 137–142. MR 245518, DOI 10.1007/BF01389796
- J. H. Conway, Hexacode and tetracode—MOG and MINIMOG, Computational group theory (Durham, 1982) Academic Press, London, 1984, pp. 359–365. MR 760670
- J. H. Conway, Three lectures on exceptional groups, Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press, London, 1971, pp. 215–247. MR 0338152
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- R. T. Curtis, A new combinatorial approach to $M_{24}$, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 25–42. MR 399247, DOI 10.1017/S0305004100052075
- R. T. Curtis, Symmetric presentations. I. Introduction, with particular reference to the Mathieu groups $M_{12}$ and $M_{24}$, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 380–396. MR 1200276, DOI 10.1017/CBO9780511629259.034
- R. T. Curtis, A. M. A. Hammas, and J. N. Bray, A systematic approach to symmetric presentations. I. Involutory generators, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 23–34. MR 1356154, DOI 10.1017/S030500410007393X
- Alexander A. Ivanov, Dmitrii V. Pasechnik, and Sergey V. Shpectorov, Non-abelian representations of some sporadic geometries, J. Algebra 181 (1996), no. 2, 523–557. MR 1383479, DOI 10.1006/jabr.1996.0132
- John Leech, Notes on sphere packings, Canadian J. Math. 19 (1967), 251–267. MR 209983, DOI 10.4153/CJM-1967-017-0
- J. A. Todd, A representation of the Mathieu group $M_{24}$ as a collineation group, Ann. Mat. Pura Appl. (4) 71 (1966), 199–238. MR 202854, DOI 10.1007/BF02413742
Bibliographic Information
- John N. Bray
- Affiliation: School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom
- Email: j.n.bray@qmul.ac.uk
- Robert T. Curtis
- Affiliation: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- MR Author ID: 198799
- Email: r.t.curtis@bham.ac.uk
- Received by editor(s): November 23, 2007
- Received by editor(s) in revised form: January 7, 2008
- Published electronically: October 20, 2009
- © Copyright 2009 by the authors
- Journal: Trans. Amer. Math. Soc. 362 (2010), 1351-1369
- MSC (2000): Primary 20D08; Secondary 20F05
- DOI: https://doi.org/10.1090/S0002-9947-09-04726-6
- MathSciNet review: 2563732
Dedicated: Dedicated to John Horton Conway as he approaches his seventieth birthday.