The second closed geodesic on Finsler spheres of dimension $n > 2$
HTML articles powered by AMS MathViewer
- by Hans-Bert Rademacher
- Trans. Amer. Math. Soc. 362 (2010), 1413-1421
- DOI: https://doi.org/10.1090/S0002-9947-09-04745-X
- Published electronically: September 18, 2009
- PDF | Request permission
Abstract:
We show the existence of at least two geometrically distinct closed geodesics on an $n$-dimensional sphere with a bumpy and non-reversible Finsler metric for $n > 2.$References
- D. V. Anosov, Geodesics and Finsler geometry, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 293–297 (Russian). MR 0426058
- W. Ballmann, G. Thorbergsson, and W. Ziller, Closed geodesics on positively curved manifolds, Ann. of Math. (2) 116 (1982), no. 2, 213–247. MR 672836, DOI 10.2307/2007062
- V. Bangert, Geodätische Linien auf Riemannschen Mannigfaltigkeiten, Jahresber. Deutsch. Math.-Verein. 87 (1985), no. 2, 39–66 (German). MR 789708
- Victor Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math. 4 (1993), no. 1, 1–10. MR 1209957, DOI 10.1142/S0129167X93000029
- V. Bangert and Y. Long: The existence of two closed geodesics on every Finsler $2$-sphere. arXiv:0709.1243
- D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, vol. 200, Springer-Verlag, New York, 2000. MR 1747675, DOI 10.1007/978-1-4612-1268-3
- Raoul Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956), 171–206. MR 90730, DOI 10.1002/cpa.3160090204
- Shiing-Shen Chern and Zhongmin Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. MR 2169595, DOI 10.1142/5263
- A. I. Fet, On a periodicity problem in the calculus of variations, Dokl. Akad. Nauk SSSR 160 (1965), 287–289 (Russian). MR 0220316
- John Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992), no. 2, 403–418. MR 1161099, DOI 10.1007/BF02100612
- N. Hingston, Equivariant Morse theory and closed geodesics, J. Differential Geom. 19 (1984), no. 1, 85–116. MR 739783, DOI 10.4310/jdg/1214438424
- Nancy Hingston, On the growth of the number of closed geodesics on the two-sphere, Internat. Math. Res. Notices 9 (1993), 253–262. MR 1240637, DOI 10.1155/S1073792893000285
- H. Hofer, K. Wysocki, and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125–255. MR 1954266, DOI 10.4007/annals.2003.157.125
- Wilhelm Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, Vol. 230, Springer-Verlag, Berlin-New York, 1978. MR 0478069, DOI 10.1007/978-3-642-61881-9
- Yiming Long, Index theory for symplectic paths with applications, Progress in Mathematics, vol. 207, Birkhäuser Verlag, Basel, 2002. MR 1898560, DOI 10.1007/978-3-0348-8175-3
- Yiming Long, Multiplicity and stability of closed geodesics on Finsler 2-spheres, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 2, 341–353. MR 2239281, DOI 10.4171/JEMS/56
- Yiming Long and Chaofeng Zhu, Closed characteristics on compact convex hypersurfaces in $\mathbf R^{2n}$, Ann. of Math. (2) 155 (2002), no. 2, 317–368. MR 1906590, DOI 10.2307/3062120
- L. A. Lyusternik and A. I. Fet, Variational problems on closed manifolds, Doklady Akad. Nauk SSSR (N.S.) 81 (1951), 17–18 (Russian). MR 0044760
- Hans-Bert Rademacher, On the average indices of closed geodesics, J. Differential Geom. 29 (1989), no. 1, 65–83. MR 978076
- Hans-Bert Rademacher, Morse-Theorie und geschlossene Geodätische, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 229, Universität Bonn, Mathematisches Institut, Bonn, 1992 (German). Habilitationsschrift, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991. MR 1237191
- Hans-Bert Rademacher, On a generic property of geodesic flows, Math. Ann. 298 (1994), no. 1, 101–116. MR 1252820, DOI 10.1007/BF01459728
- Hans-Bert Rademacher, A sphere theorem for non-reversible Finsler metrics, Math. Ann. 328 (2004), no. 3, 373–387. MR 2036326, DOI 10.1007/s00208-003-0485-y
- Hans-Bert Rademacher, Existence of closed geodesics on positively curved Finsler manifolds, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 957–969. MR 2322187, DOI 10.1017/S0143385706001064
- I. A. Taĭmanov, Closed extremals on two-dimensional manifolds, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 143–185, 223 (Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 163–211. MR 1185286, DOI 10.1070/RM1992v047n02ABEH000880
- Wolfgang Ziller, Geometry of the Katok examples, Ergodic Theory Dynam. Systems 3 (1983), no. 1, 135–157. MR 743032, DOI 10.1017/S0143385700001851
Bibliographic Information
- Hans-Bert Rademacher
- Affiliation: Mathematisches Institut, Universität Leipzig, 04081 Leipzig, Germany
- Email: rademacher@math.uni-leipzig.de
- Received by editor(s): August 9, 2006
- Received by editor(s) in revised form: January 31, 2008
- Published electronically: September 18, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1413-1421
- MSC (2000): Primary 53C22, 53C60, 58E10
- DOI: https://doi.org/10.1090/S0002-9947-09-04745-X
- MathSciNet review: 2563734