Almost all elliptic curves are Serre curves
HTML articles powered by AMS MathViewer
- by Nathan Jones
- Trans. Amer. Math. Soc. 362 (2010), 1547-1570
- DOI: https://doi.org/10.1090/S0002-9947-09-04804-1
- Published electronically: September 30, 2009
- PDF | Request permission
Abstract:
Using a multidimensional large sieve inequality, we obtain a bound for the mean-square error in the Chebotarev theorem for division fields of elliptic curves that is as strong as what is implied by the Generalized Riemann Hypothesis. As an application we prove that, according to height, almost all elliptic curves are Serre curves, where a Serre curve is an elliptic curve whose torsion subgroup, roughly speaking, has as much Galois symmetry as possible.References
- Armand Brumer, The average rank of elliptic curves. I, Invent. Math. 109 (1992), no. 3, 445–472. MR 1176198, DOI 10.1007/BF01232033
- Alina Carmen Cojocaru, On the surjectivity of the Galois representations associated to non-CM elliptic curves, Canad. Math. Bull. 48 (2005), no. 1, 16–31. With an appendix by Ernst Kani. MR 2118760, DOI 10.4153/CMB-2005-002-x
- Alina Carmen Cojocaru and Chris Hall, Uniform results for Serre’s theorem for elliptic curves, Int. Math. Res. Not. 50 (2005), 3065–3080. MR 2189500, DOI 10.1155/IMRN.2005.3065
- David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
- Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931, DOI 10.1007/978-1-4757-5927-3
- Chantal David and Francesco Pappalardi, Average Frobenius distributions of elliptic curves, Internat. Math. Res. Notices 4 (1999), 165–183. MR 1677267, DOI 10.1155/S1073792899000082
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 5125, DOI 10.1007/BF02940746
- William Duke, Elliptic curves with no exceptional primes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 8, 813–818 (English, with English and French summaries). MR 1485897, DOI 10.1016/S0764-4442(97)80118-8
- W. Duke and Á. Tóth, The splitting of primes in division fields of elliptic curves, Experiment. Math. 11 (2002), no. 4, 555–565 (2003). MR 1969646, DOI 10.1080/10586458.2002.10504706
- N. Elkies, Elliptic curves with $3$-adic Galois representation surjective mod $3$ but not mod $9$, preprint (2006). Available at http://arxiv.org/abs/math/0612734
- P. X. Gallagher, The large sieve and probabilistic Galois theory, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 91–101. MR 0332694
- David Grant, A formula for the number of elliptic curves with exceptional primes, Compositio Math. 122 (2000), no. 2, 151–164. MR 1775416, DOI 10.1023/A:1001874400583
- Nathan Jones, Trace formulas and class number sums, Acta Arith. 132 (2008), no. 4, 301–313. MR 2413354, DOI 10.4064/aa132-4-1
- N. Jones, Averages of elliptic curve constants, to appear in Mathematische Annalen.
- Alain Kraus, Une remarque sur les points de torsion des courbes elliptiques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 9, 1143–1146 (French, with English and French summaries). MR 1360773
- D. W. Masser and G. Wüstholz, Galois properties of division fields of elliptic curves, Bull. London Math. Soc. 25 (1993), no. 3, 247–254. MR 1209248, DOI 10.1112/blms/25.3.247
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- René Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), no. 2, 183–211. MR 914657, DOI 10.1016/0097-3165(87)90003-3
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 0263823
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- —, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 123–201
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- William C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521–560. MR 265369, DOI 10.24033/asens.1183
Bibliographic Information
- Nathan Jones
- Affiliation: Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centreville Station, Montréal, Québec, Canada H3C 3J7
- Address at time of publication: Department of Mathematics, University of Mississippi, Hume Hall 305, P.O. Box 1848, University, Mississippi 33677-1848
- MR Author ID: 842244
- Email: ncjones@olemiss.edu
- Received by editor(s): May 4, 2007
- Received by editor(s) in revised form: April 3, 2008
- Published electronically: September 30, 2009
- © Copyright 2009 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 1547-1570
- MSC (2000): Primary 11G05, 11F80
- DOI: https://doi.org/10.1090/S0002-9947-09-04804-1
- MathSciNet review: 2563740