Baire classes of Banach spaces and strongly affine functions
HTML articles powered by AMS MathViewer
- by Jiří Spurný
- Trans. Amer. Math. Soc. 362 (2010), 1659-1680
- DOI: https://doi.org/10.1090/S0002-9947-09-04841-7
- Published electronically: October 20, 2009
- PDF | Request permission
Abstract:
We construct a metrizable simplex $X$ and a Baire–two function $f$ on $X$ satisfying the barycentric formula such that $f$ is not of affine class two; i.e., there is no bounded sequence of affine Baire–one functions on $X$ converging to $f$. This provides an example of a Banach $\mathcal {L}_\infty$–space $E$ such that $E_{2}^{**}\neq E_{\mathcal {B}_2}^{**}$.References
- Wilhelm Wirtinger, Über eine Minimalaufgabe im Gebiete der analytischen Funktionen von mehreren Veränderlichen, Monatsh. Math. Phys. 47 (1939), 426–431 (German). MR 56, DOI 10.1007/BF01695512
- Spiros A. Argyros, Gilles Godefroy, and Haskell P. Rosenthal, Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1007–1069. MR 1999190, DOI 10.1016/S1874-5849(03)80030-X
- L. Asimow and A. J. Ellis, Convexity theory and its applications in functional analysis, London Mathematical Society Monographs, vol. 16, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 623459
- Miroslav Bačák and Jiří Spurný, Complementability of spaces of affine continuous functions on simplices, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 3, 465–472. MR 2457962
- René Baire, Sur la représentation des fonctions discontinues, Acta Math. 30 (1906), no. 1, 1–48 (French). MR 1555022, DOI 10.1007/BF02418566
- Radu Bǎdescu, On a problem of Goursat, Gaz. Mat. 44 (1939), 571–577. MR 0000087
- Y. Benyamini and J. Lindenstrauss, A predual of $l_{1}$ which is not isomorphic to a $C(K)$ space, Israel J. Math. 13 (1972), 246–254 (1973). MR 331013, DOI 10.1007/BF02762798
- Michèle Capon, Sur les fonctions qui vérifient le calcul barycentrique, Proc. London Math. Soc. (3) 32 (1976), no. 1, 163–180 (French). MR 394148, DOI 10.1112/plms/s3-32.1.163
- Josef Mall, Ein Satz über die Konvergenz von Kettenbrüchen, Math. Z. 45 (1939), 368–376 (German). MR 40, DOI 10.1007/BF01580290
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- V. P. Fonf, J. Lindenstrauss, and R. R. Phelps, Infinite dimensional convexity, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 599–670. MR 1863703, DOI 10.1016/S1874-5849(01)80017-6
- P. Holický, L. Zajíček, and M. Zelený, A remark on a theorem of Solecki, Comment. Math. Univ. Carolin. 46 (2005), no. 1, 43–54. MR 2175858
- William B. Johnson and Joram Lindenstrauss, Basic concepts in the geometry of Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 1–84. MR 1863689, DOI 10.1016/S1874-5849(01)80003-6
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Ulrich Krause, Der Satz von Choquet als ein abstrakter Spektralsatz und vice versa, Math. Ann. 184 (1970), no. 4, 275–296 (German). MR 1513280, DOI 10.1007/BF01350856
- Aldo J. Lazar, Spaces of affine continuous functions on simplexes, Trans. Amer. Math. Soc. 134 (1968), 503–525. MR 233188, DOI 10.1090/S0002-9947-1968-0233188-2
- J. Lukeš, J. Malý, I. Netuka, M. Smrčka, and J. Spurný, On approximation of affine Baire-one functions, Israel J. Math. 134 (2003), 255–287. MR 1972180, DOI 10.1007/BF02787408
- Jaroslav Lukeš, Tomáš Mocek, Michael Smrčka, and Jiří Spurný, Choquet like sets in function spaces, Bull. Sci. Math. 127 (2003), no. 5, 397–437 (English, with English and French summaries). MR 1991463, DOI 10.1016/S0007-4497(03)00042-3
- N. N. Luzin, Sobranie sochineniĭ. Tom II: Deskriptivnaya teoriya mnozhestv, Izdat. Akad. Nauk SSSR, Moscow, 1958 (Russian). MR 0153522
- Robert R. Phelps, Lectures on Choquet’s theorem, 2nd ed., Lecture Notes in Mathematics, vol. 1757, Springer-Verlag, Berlin, 2001. MR 1835574, DOI 10.1007/b76887
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Marc Rogalski, Opérateurs de Lion, projecteurs boéliens et simplexes analytiques, J. Functional Analysis 2 (1968), 458–488 (French). MR 0236763, DOI 10.1016/0022-1236(68)90005-0
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Jiří Spurný, Representation of abstract affine functions, Real Anal. Exchange 28 (2002/03), no. 2, 337–354. MR 2009758, DOI 10.14321/realanalexch.28.2.0337
- Jiří Spurný, The weak Dirichlet problem for Baire functions, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3153–3157. MR 2231897, DOI 10.1090/S0002-9939-06-08683-7
- Michel Talagrand, A new type of affine Borel function, Math. Scand. 54 (1984), no. 2, 183–188. MR 757461, DOI 10.7146/math.scand.a-12052
Bibliographic Information
- Jiří Spurný
- Affiliation: Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
- Email: spurny@karlin.mff.cuni.cz
- Received by editor(s): May 24, 2007
- Received by editor(s) in revised form: June 4, 2008
- Published electronically: October 20, 2009
- Additional Notes: This research was supported in part by the grants GA ČR 201/06/0018, GA ČR 201/07/0388, and in part by the Research Project MSM 0021620839 from the Czech Ministry of Education.
- © Copyright 2009 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 1659-1680
- MSC (2000): Primary 46A55; Secondary 26A21
- DOI: https://doi.org/10.1090/S0002-9947-09-04841-7
- MathSciNet review: 2563744