Siegel metric and curvature of the moduli space of curves
HTML articles powered by AMS MathViewer
- by Elisabetta Colombo and Paola Frediani
- Trans. Amer. Math. Soc. 362 (2010), 1231-1246
- DOI: https://doi.org/10.1090/S0002-9947-09-04845-4
- Published electronically: October 19, 2009
- PDF | Request permission
Abstract:
We study the curvature of the moduli space ${M_g}$ of curves of genus $g$ with the Siegel metric induced by the period map $j:{ M_g}\rightarrow {A_g}$. We give an explicit formula for the holomorphic sectional curvature of ${M_g}$ along a Schiffer variation $\xi _P$, for $P$ a point on the curve $X$, in terms of the holomorphic sectional curvature of ${A_g}$ and the second Gaussian map. Finally we extend the Kähler form of the Siegel metric as a closed current on $\overline {M}_g$ and we determine its cohomology class as a multiple of $\lambda$.References
- A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications, Vol. IV, Math Sci Press, Brookline, Mass., 1975. MR 0457437
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Colombo, E., Frediani, P., Some results on the second Gaussian map for curves, arXiv:0805.3422, to appear in Michigan Journal of Mathematics.
- Elisabetta Colombo, Gian Pietro Pirola, and Alfonso Tortora, Hodge-Gaussian maps, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), no. 1, 125–146. MR 1882027
- G. Faltings, Arakelov’s theorem for abelian varieties, Invent. Math. 73 (1983), no. 3, 337–347. MR 718934, DOI 10.1007/BF01388431
- M. L. Green, Quadrics of rank four in the ideal of a canonical curve, Invent. Math. 75 (1984), no. 1, 85–104. MR 728141, DOI 10.1007/BF01403092
- Mark L. Green, Infinitesimal methods in Hodge theory, Algebraic cycles and Hodge theory (Torino, 1993) Lecture Notes in Math., vol. 1594, Springer, Berlin, 1994, pp. 1–92. MR 1335239, DOI 10.1007/978-3-540-49046-3_{1}
- Phillip A. Griffiths, Infinitesimal variations of Hodge structure. III. Determinantal varieties and the infinitesimal invariant of normal functions, Compositio Math. 50 (1983), no. 2-3, 267–324. MR 720290
- Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. MR 909698, DOI 10.1515/9781400858682
- Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau, Canonical metrics on the moduli space of Riemann surfaces. I, J. Differential Geom. 68 (2004), no. 3, 571–637. MR 2144543
- Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau, Canonical metrics on the moduli space of Riemann surfaces. II, J. Differential Geom. 69 (2005), no. 1, 163–216. MR 2169586
- Howard Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J. 43 (1976), no. 3, 623–635. MR 417456
- Michel Meo, Image inverse d’un courant positif fermé par une application analytique surjective, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 12, 1141–1144 (French, with English and French summaries). MR 1396655
- D. Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239–272. MR 471627, DOI 10.1007/BF01389790
- David Mumford, Stability of projective varieties, Enseign. Math. (2) 23 (1977), no. 1-2, 39–110. MR 450272
- Yukihiko Namikawa, A new compactification of the Siegel space and degeneration of Abelian varieties. II, Math. Ann. 221 (1976), no. 3, 201–241. MR 480538, DOI 10.1007/BF01596390
- Yukihiko Namikawa, Toroidal compactification of Siegel spaces, Lecture Notes in Mathematics, vol. 812, Springer, Berlin, 1980. MR 584625, DOI 10.1007/BFb0091051
- Frans Oort and Joseph Steenbrink, The local Torelli problem for algebraic curves, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 157–204. MR 605341
- Gian Pietro Pirola, The infinitesimal variation of the spin abelian differentials and periodic minimal surfaces, Comm. Anal. Geom. 6 (1998), no. 3, 393–426. MR 1638858, DOI 10.4310/CAG.1998.v6.n3.a1
- Jonathan Wahl, Gaussian maps on algebraic curves, J. Differential Geom. 32 (1990), no. 1, 77–98. MR 1064866
- Jonathan Wahl, Introduction to Gaussian maps on an algebraic curve, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 304–323. MR 1201392, DOI 10.1017/CBO9780511662652.023
- Scott Wolpert, On the homology of the moduli space of stable curves, Ann. of Math. (2) 118 (1983), no. 3, 491–523. MR 727702, DOI 10.2307/2006980
- Scott Wolpert, Noncompleteness of the Weil-Petersson metric for Teichmüller space, Pacific J. Math. 61 (1975), no. 2, 573–577. MR 422692, DOI 10.2140/pjm.1975.61.573
Bibliographic Information
- Elisabetta Colombo
- Affiliation: Dipartimento di Matematica, Università di Milano, via Saldini 50, I-20133, Milano, Italy
- Email: elisabetta.colombo@unimi.it
- Paola Frediani
- Affiliation: Dipartimento di Matematica, Università di Pavia, via Ferrata 1, I-27100 Pavia, Italy
- MR Author ID: 347739
- ORCID: 0000-0003-2537-2727
- Email: paola.frediani@unipv.it
- Received by editor(s): July 19, 2007
- Published electronically: October 19, 2009
- Additional Notes: The authors thank Gilberto Bini and Pietro Pirola for several fruitful suggestions and discussions on the subject. The present research took place in the framework of the PRIN 2005 MIUR: “Spazi dei moduli e teoria di Lie” and PRIN 2006 of MIUR: “Geometry of algebraic varieties”.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1231-1246
- MSC (2000): Primary 14H10, 14H15, 14K25, 53C42, 53C55
- DOI: https://doi.org/10.1090/S0002-9947-09-04845-4
- MathSciNet review: 2563728