The regular algebra of a poset
HTML articles powered by AMS MathViewer
- by Pere Ara
- Trans. Amer. Math. Soc. 362 (2010), 1505-1546
- DOI: https://doi.org/10.1090/S0002-9947-09-04884-3
- Published electronically: October 20, 2009
- PDF | Request permission
Abstract:
Let $K$ be a fixed field. We attach to each finite poset $\mathbb P$ a von Neumann regular $K$-algebra $Q_K(\mathbb P)$ in a functorial way. We show that the monoid of isomorphism classes of finitely generated projective $Q_K(\mathbb P)$-modules is the abelian monoid generated by $\mathbb P$ with the only relations given by $p=p+q$ whenever $q<p$ in $\mathbb P$. This extends the class of monoids for which there is a positive solution to the realization problem for von Neumann regular rings.References
- Gene D. Abrams, Morita equivalence for rings with local units, Comm. Algebra 11 (1983), no. 8, 801–837. MR 695890, DOI 10.1080/00927878308822881
- Gene Abrams and Gonzalo Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005), no. 2, 319–334. MR 2172342, DOI 10.1016/j.jalgebra.2005.07.028
- Gene Abrams and Gonzalo Aranda Pino, Purely infinite simple Leavitt path algebras, J. Pure Appl. Algebra 207 (2006), no. 3, 553–563. MR 2265539, DOI 10.1016/j.jpaa.2005.10.010
- P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), no. 1, 1–16. MR 899719, DOI 10.21099/tkbjm/1496160500
- Pere Ara, Extensions of exchange rings, J. Algebra 197 (1997), no. 2, 409–423. MR 1483771, DOI 10.1006/jabr.1997.7116
- P. Ara, The realization problem for von Neumann regular rings, Proceedings of the Fifth China-Japan-Korea International Symposium on Ring Theory, Tokyo 2007, (eds. H. Marubayashi, K. Masaike, K. Oshiro, M. Sato); World Scientific, 2009, pp. 21–37.
- Pere Ara and Miquel Brustenga, The regular algebra of a quiver, J. Algebra 309 (2007), no. 1, 207–235. MR 2301238, DOI 10.1016/j.jalgebra.2006.10.013
- P. Ara, M. Brustenga, Mixed quiver algebras, Preprint, arXiv:0909.0421v1 [math.RA].
- Pere Ara and Alberto Facchini, Direct sum decompositions of modules, almost trace ideals, and pullbacks of monoids, Forum Math. 18 (2006), no. 3, 365–389. MR 2237927, DOI 10.1515/FORUM.2006.021
- P. Ara, K. R. Goodearl, and E. Pardo, $K_0$ of purely infinite simple regular rings, $K$-Theory 26 (2002), no. 1, 69–100. MR 1918211, DOI 10.1023/A:1016358107918
- P. Ara, K. R. Goodearl, K. C. O’Meara, and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998), 105–137. MR 1639739, DOI 10.1007/BF02780325
- P. Ara, K. R. Goodearl, K. C. O’Meara, and R. Raphael, $K_1$ of separative exchange rings and $C^\ast$-algebras with real rank zero, Pacific J. Math. 195 (2000), no. 2, 261–275. MR 1782176, DOI 10.2140/pjm.2000.195.261
- P. Ara, M. A. Moreno, and E. Pardo, Nonstable $K$-theory for graph algebras, Algebr. Represent. Theory 10 (2007), no. 2, 157–178. MR 2310414, DOI 10.1007/s10468-006-9044-z
- Pere Ara, Francesc Perera, and Friedrich Wehrung, Finitely generated antisymmetric graph monoids, J. Algebra 320 (2008), no. 5, 1963–1982. MR 2437639, DOI 10.1016/j.jalgebra.2008.06.013
- George M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1–32. MR 357502, DOI 10.1090/S0002-9947-1974-0357502-5
- George M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33–88. MR 357503, DOI 10.1090/S0002-9947-1974-0357503-7
- George M. Bergman and Warren Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (1978), no. 2, 293–337. MR 531320, DOI 10.2140/pjm.1978.79.293
- Gary Brookfield, Cancellation in primely generated refinement monoids, Algebra Universalis 46 (2001), no. 3, 343–371. MR 1857203, DOI 10.1007/PL00000350
- P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091
- Kenneth R. Davidson, $C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012, DOI 10.1090/fim/006
- Nikolay Dubrovin, Pavel Příhoda, and Gena Puninski, Projective modules over the Gerasimov-Sakhaev counterexample, J. Algebra 319 (2008), no. 8, 3259–3279. MR 2408317, DOI 10.1016/j.jalgebra.2007.08.009
- José Luis García and Juan Jacobo Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), no. 1, 39–56. MR 1140639, DOI 10.1016/0022-4049(91)90096-K
- John M. Howie, Fundamentals of semigroup theory, London Mathematical Society Monographs. New Series, vol. 12, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR 1455373
- K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, vol. 4, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 533669
- K. R. Goodearl, von Neumann regular rings and direct sum decomposition problems, Abelian groups and modules (Padova, 1994) Math. Appl., vol. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp. 249–255. MR 1378203
- K. R. Goodearl, Leavitt path algebras and direct limits, Contemporary Mathematics 480 (2009), 165–187.
- N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc. 1 (1950), 352–355. MR 36223, DOI 10.1090/S0002-9939-1950-0036223-1
- Pere Menal and Jaume Moncasi, On regular rings with stable range $2$, J. Pure Appl. Algebra 24 (1982), no. 1, 25–40. MR 647578, DOI 10.1016/0022-4049(82)90056-1
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278. MR 439876, DOI 10.1090/S0002-9947-1977-0439876-2
- Francesc Perera, Lifting units modulo exchange ideals and $C^*$-algebras with real rank zero, J. Reine Angew. Math. 522 (2000), 51–62. MR 1758574, DOI 10.1515/crll.2000.040
- R. S. Pierce, Countable Boolean algebras, Handbook of Boolean algebras, Vol. 3, North-Holland, Amsterdam, 1989, pp. 775–876. MR 991610
- Iain Raeburn, Graph algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005. MR 2135030, DOI 10.1090/cbms/103
- Jonathan Rosenberg, Algebraic $K$-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994. MR 1282290, DOI 10.1007/978-1-4612-4314-4
- A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853, DOI 10.1017/CBO9780511661914
- Friedrich Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math. 103 (1998), 177–206. MR 1613568, DOI 10.1007/BF02762273
- F. Wehrung, The dimension monoid of a lattice, Algebra Universalis 40 (1998), no. 3, 247–411. MR 1668068, DOI 10.1007/s000120050091
Bibliographic Information
- Pere Ara
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
- MR Author ID: 206418
- Email: para@mat.uab.cat
- Received by editor(s): February 15, 2008
- Published electronically: October 20, 2009
- Additional Notes: This research was partially supported by the DGI and European Regional Development Fund, jointly, through Project MTM2005-00934, and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1505-1546
- MSC (2000): Primary 16D70; Secondary 16E50, 06F05, 46L80
- DOI: https://doi.org/10.1090/S0002-9947-09-04884-3
- MathSciNet review: 2563739