Weighted averages of modular $L$-values
HTML articles powered by AMS MathViewer
- by Andrew Knightly and Charles Li
- Trans. Amer. Math. Soc. 362 (2010), 1423-1443
- DOI: https://doi.org/10.1090/S0002-9947-09-04923-X
- Published electronically: September 25, 2009
- PDF | Request permission
Abstract:
Using an explicit relative trace formula on $\operatorname {GL}(2)$, we derive a formula for averages of modular $L$-values in the critical strip, weighting by Fourier coefficients, Hecke eigenvalues, and Petersson norms. As an application we show that a GRH holds for these averages as the weight or the level goes to $\infty$. We also use the formula to give explicit zero-free regions of the form $|\operatorname {Im}(s)|\le \tau _0$ for some particular modular $L$-functions.References
- Amir Akbary, Non-vanishing of weight $k$ modular $L$-functions with large level, J. Ramanujan Math. Soc. 14 (1999), no. 1, 37–54. MR 1700874
- N. Abramowitz and I. Stegun, editors, Handbook of mathematical functions, Dover Publications, New York, 1965.
- W. Duke, The critical order of vanishing of automorphic $L$-functions with large level, Invent. Math. 119 (1995), no. 1, 165–174. MR 1309975, DOI 10.1007/BF01245178
- Jordan S. Ellenberg, On the error term in Duke’s estimate for the average special value of $L$-functions, Canad. Math. Bull. 48 (2005), no. 4, 535–546. MR 2176151, DOI 10.4153/CMB-2005-049-8
- B. Feigon and D. Whitehouse, Averages of central $L$-values of Hilbert modular forms with an application to subconvexity, preprint (2007).
- Yuichi Kamiya, Certain mean values and non-vanishing of automorphic $L$-functions with large level, Acta Arith. 93 (2000), no. 2, 157–176. MR 1757188, DOI 10.4064/aa-93-2-157-176
- Andrew Knightly and Charles Li, A relative trace formula proof of the Petersson trace formula, Acta Arith. 122 (2006), no. 3, 297–313. MR 2239919, DOI 10.4064/aa122-3-5
- Andrew Knightly and Charles Li, Traces of Hecke operators, Mathematical Surveys and Monographs, vol. 133, American Mathematical Society, Providence, RI, 2006. MR 2273356, DOI 10.1090/surv/133
- Winfried Kohnen, Nonvanishing of Hecke $L$-functions associated to cusp forms inside the critical strip, J. Number Theory 67 (1997), no. 2, 182–189. MR 1486497, DOI 10.1006/jnth.1997.2178
- Charles C. C. Li, Kuznietsov trace formula and weighted distribution of Hecke eigenvalues, J. Number Theory 104 (2004), no. 1, 177–192. MR 2021634, DOI 10.1016/S0022-314X(03)00149-5
- Philippe Michel, Analytic number theory and families of automorphic $L$-functions, Automorphic forms and applications, IAS/Park City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 181–295. MR 2331346, DOI 10.1090/pcms/012/05
- Dinakar Ramakrishnan and Jonathan Rogawski, Average values of modular $L$-series via the relative trace formula, Pure Appl. Math. Q. 1 (2005), no. 4, Special Issue: In memory of Armand Borel., 701–735. MR 2200997, DOI 10.4310/PAMQ.2005.v1.n4.a1
- Emmanuel Royer, Facteurs $\mathbf Q$-simples de $J_0(N)$ de grande dimension et de grand rang, Bull. Soc. Math. France 128 (2000), no. 2, 219–248 (French, with English and French summaries). MR 1772442, DOI 10.24033/bsmf.2369
- Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, 75–102 (French). MR 1396897, DOI 10.1090/S0894-0347-97-00220-8
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766
- L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, New York, 1960. MR 0107026
- John L. Spouge, Computation of the gamma, digamma, and trigamma functions, SIAM J. Numer. Anal. 31 (1994), no. 3, 931–944. MR 1275121, DOI 10.1137/0731050
Bibliographic Information
- Andrew Knightly
- Affiliation: Department of Mathematics and Statistics, Neville Hall, University of Maine, Orono, Maine 04469-5752
- Charles Li
- Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Received by editor(s): January 31, 2008
- Published electronically: September 25, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1423-1443
- MSC (2000): Primary 11F11, 11F30, 11F67, 11F70
- DOI: https://doi.org/10.1090/S0002-9947-09-04923-X
- MathSciNet review: 2563735