Asymptotic curvature decay and removal of singularities of Bach-flat metrics
HTML articles powered by AMS MathViewer
- by Jeffrey Streets
- Trans. Amer. Math. Soc. 362 (2010), 1301-1324
- DOI: https://doi.org/10.1090/S0002-9947-09-04960-5
- Published electronically: October 20, 2009
- PDF | Request permission
Abstract:
We prove a removal of singularities result for Bach-flat metrics in dimension $4$ under the assumption of bounded $L^2$-norm of curvature, bounded Sobolev constant and a volume growth bound. This result extends the removal of singularities result for special classes of Bach-flat metrics obtained by Tian and Viaclovsby. For the proof we emulate Cheeger and Tian and analyze the decay rates of solutions to the Bach-flat equation linearized around a flat metric. This classification is used to prove that Bach-flat cones are in fact ALE of order $2$. This result is then used to prove the removal of singularities theorem.References
- Jeff Cheeger and Gang Tian, On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math. 118 (1994), no. 3, 493–571. MR 1296356, DOI 10.1007/BF01231543
- S. Chen, Optimal curvature decays on asymptotically locally euclidean manifolds, preprint.
- Xiuxiong Chen, Claude Lebrun, and Brian Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), no. 4, 1137–1168. MR 2425183, DOI 10.1090/S0894-0347-08-00594-8
- Andrzej Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405–433. MR 707181
- Olga Taussky, An algebraic property of Laplace’s differential equation, Quart. J. Math. Oxford Ser. 10 (1939), 99–103. MR 83, DOI 10.1093/qmath/os-10.1.99
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259–284 (French). MR 454884
- G. Tian and J. Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, arXiv:math.DG/0312318.
- G. Tian and J. Viaclovsky, Bach-flat asymptotically locally Euclidean metrics, arXiv:math.DG/0310302.
Bibliographic Information
- Jeffrey Streets
- Affiliation: Department of Mathematics, Fine Hall, Princeton University, Princeton, New Jersey 08544
- Email: jstreets@math.princeton.edu
- Received by editor(s): September 11, 2007
- Published electronically: October 20, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1301-1324
- MSC (2000): Primary 53C25
- DOI: https://doi.org/10.1090/S0002-9947-09-04960-5
- MathSciNet review: 2563730