Orbit of the diagonal in the power of a nilmanifold
HTML articles powered by AMS MathViewer
- by A. Leibman
- Trans. Amer. Math. Soc. 362 (2010), 1619-1658
- DOI: https://doi.org/10.1090/S0002-9947-09-04961-7
- Published electronically: October 20, 2009
- PDF | Request permission
Abstract:
Let $X$ be a nilmanifold, that is, a compact homogeneous space of a nilpotent Lie group $G$, and let $a\in G$. We study the closure of the orbit of the diagonal of $X^{r}$ under the action $(a^{p_{1}(n)},\ldots ,a^{p_{r}(n)})$, where $p_{i}$ are integer-valued polynomials in $m$ integer variables. (Knowing this closure is crucial for finding limits of the form $\hbox {lim}_{N\rightarrow \infty }\frac {1}{N^{m}}\sum _{n\in \{1,\ldots ,N\}^{m}} \mu (T^{p_{1}(n)}A_{1}\cap \ldots \cap T^{p_{r}(n)}A_{r})$, where $T$ is a measure-preserving transformation of a finite measure space $(Y,\mu )$ and $A_{i}$ are subsets of $Y$, and limits of the form $\hbox {lim}_{N\rightarrow \infty }\frac {1}{N^{m}}\sum _{n\in \{1,\ldots ,N\}^{m}} d((A_{1}+p_{1}(n))\cap \ldots \cap (A_{r}+p_{r}(n)))$, where $A_{i}$ are subsets of Z and $d(A)$ is the density of $A$ in Z.) We give a simple description of the closure of the orbit of the diagonal in the case that all $p_{i}$ are linear, in the case that $G$ is connected, and in the case that the identity component of $G$ is commutative; in the general case our description of the orbit is not explicit.References
- Vitaly Bergelson, The multifarious Poincaré recurrence theorem, Descriptive set theory and dynamical systems (Marseille-Luminy, 1996) London Math. Soc. Lecture Note Ser., vol. 277, Cambridge Univ. Press, Cambridge, 2000, pp. 31–57. MR 1774423
- Vitaly Bergelson, Bernard Host, and Bryna Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), no. 2, 261–303. With an appendix by Imre Ruzsa. MR 2138068, DOI 10.1007/s00222-004-0428-6
- V. Bergelson, A. Leibman, and E. Lesigne, Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory, J. Anal. Math. 103 (2007), 47–92. MR 2373264, DOI 10.1007/s11854-008-0002-z
- V. Bergelson, A. Leibman, and E. Lesigne, Intersective polynomials and the polynomial Szemerédi theorem, Adv. Math. 219 (2008), no. 1, 369–388. MR 2435427, DOI 10.1016/j.aim.2008.05.008
- Nikos Frantzikinakis, Multiple ergodic averages for three polynomials and applications, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5435–5475. MR 2415080, DOI 10.1090/S0002-9947-08-04591-1
- Nikos Frantzikinakis and Bryna Kra, Polynomial averages converge to the product of integrals, Israel J. Math. 148 (2005), 267–276. Probability in mathematics. MR 2191231, DOI 10.1007/BF02775439
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- T. Gowers and J. Wolf, The true complexity of a system of linear equations, preprint.
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Bernard Host and Bryna Kra, Convergence of polynomial ergodic averages, Israel J. Math. 149 (2005), 1–19. Probability in mathematics. MR 2191208, DOI 10.1007/BF02772534
- A. Leibman, Polynomial sequences in groups, J. Algebra 201 (1998), no. 1, 189–206. MR 1608723, DOI 10.1006/jabr.1997.7269
- A. Leibman, Polynomial mappings of groups, Israel J. Math. 129 (2002), 29–60. MR 1910931, DOI 10.1007/BF02773152
- A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 201–213. MR 2122919, DOI 10.1017/S0143385704000215
- A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of ${\Bbb Z}^d$ by translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 215–225. MR 2122920, DOI 10.1017/S0143385704000227
- A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303–315. MR 2151605, DOI 10.1007/BF02773538
- A. Leibman, Host-Kra and Ziegler factors, and convergence of multiple averages (appendix to V. Bergelson, Combinatorial and Diophantine Applications of Ergodic Theory), Handbook of Dynamical Systems, vol. 1B, B. Hasselblatt and A. Katok, eds., Elsevier, 2005, pp. 841-853.
- A. Leibman, Rational sub-nilmanifolds of a compact nilmanifold, Ergodic Theory Dynam. Systems 26 (2006), no. 3, 787–798. MR 2237471, DOI 10.1017/S014338570500057X
- A. Leibman, Orbits on a nilmanifold under the action of a polynomial sequence of translations, Ergodic Theory Dynam. Systems 27 (2007), no. 4, 1239–1252. MR 2342974, DOI 10.1017/S0143385706000940
- Emmanuel Lesigne, Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 379–391 (French, with English summary). MR 1116647, DOI 10.1017/S0143385700006209
- Nimish A. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 229–271. MR 1699367
- A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 9 (1962), 276-307.
- T. Ziegler, A non-conventional ergodic theorem for a nilsystem, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1357–1370. MR 2158410, DOI 10.1017/S0143385703000518
- Tamar Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53–97. MR 2257397, DOI 10.1090/S0894-0347-06-00532-7
Bibliographic Information
- A. Leibman
- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
- Email: leibman@math.ohio-state.edu
- Received by editor(s): May 27, 2008
- Published electronically: October 20, 2009
- Additional Notes: This research was supported in part by NSF grants DMS-0345350 and DMS-0600042.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1619-1658
- MSC (2000): Primary 37C99; Secondary 22E25
- DOI: https://doi.org/10.1090/S0002-9947-09-04961-7
- MathSciNet review: 2563743