A relative Seidel morphism and the Albers map
HTML articles powered by AMS MathViewer
- by Shengda Hu and François Lalonde
- Trans. Amer. Math. Soc. 362 (2010), 1135-1168
- DOI: https://doi.org/10.1090/S0002-9947-09-04986-1
- Published electronically: October 2, 2009
- PDF | Request permission
Abstract:
In this note, we introduce a relative (or Lagrangian) version of the Seidel homomorphism that assigns to each homotopy class of paths in $\textrm {Ham}(M)$, starting at the identity and ending on the subgroup that preserves a given Lagrangian submanifold $L$, an element in the Floer homology of $L$. We show that these elements are related to the absolute Seidel elements by the Albers map. We also study, for later use, the effect of reversing the signs of the symplectic structure as well as the orientations of the generators and of the operations on the Floer homologies.References
- Alberto Abbondandolo and Matthias Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006), no. 2, 254–316. MR 2190223, DOI 10.1002/cpa.20090
- Miguel Abreu, Topology of symplectomorphism groups of $S^2\times S^2$, Invent. Math. 131 (1998), no. 1, 1–23. MR 1489893, DOI 10.1007/s002220050196
- P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, International Mathematical Research Notices 2007, article ID rnm134, 56 pages.
- P. Biran and O. Cornea, Quantum structures for Lagrangian submanifolds, arXiv:0708.4221 (2007), 193 pages.
- P. Biran and O. Cornea, Lagrangian Quantum Homology, The Yashafest, Stanford, June 2007, M. Abreu, F. Lalonde and L. Polterovich eds., to appear in the CRM Proceedings and Lecture Notes, American Mathematical Society.
- K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory - anomaly and obstruction, preprint.
- H. Hofer and D. A. Salamon, Floer homology and Novikov rings, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 483–524. MR 1362838
- François Lalonde, Dusa McDuff, and Leonid Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999), no. 2, 369–385. MR 1666763, DOI 10.1007/s002220050289
- Rémi Leclercq, Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn. 2 (2008), no. 2, 249–286. MR 2383268, DOI 10.3934/jmd.2008.2.249
- Dusa McDuff, Quantum homology of fibrations over $S^2$, Internat. J. Math. 11 (2000), no. 5, 665–721. MR 1780735, DOI 10.1142/S0129167X00000337
- Dusa McDuff and Susan Tolman, Topological properties of Hamiltonian circle actions, IMRP Int. Math. Res. Pap. (2006), 72826, 1–77. MR 2210662
- Yong-Geun Oh, Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds, Contact and symplectic geometry (Cambridge, 1994) Publ. Newton Inst., vol. 8, Cambridge Univ. Press, Cambridge, 1996, pp. 201–267. MR 1432465
- S. Piunikhin, D. Salamon, and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Contact and symplectic geometry (Cambridge, 1994) Publ. Newton Inst., vol. 8, Cambridge Univ. Press, Cambridge, 1996, pp. 171–200. MR 1432464
- Joel Robbin and Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827–844. MR 1241874, DOI 10.1016/0040-9383(93)90052-W
- Joel Robbin and Dietmar Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1–33. MR 1331677, DOI 10.1112/blms/27.1.1
- P. Seidel, $\pi _1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997), no. 6, 1046–1095. MR 1487754, DOI 10.1007/s000390050037
Bibliographic Information
- Shengda Hu
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Email: hshengda@math.uwaterloo.ca
- François Lalonde
- Affiliation: Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Québec, Canada
- Email: lalonde@dms.umontreal.ca
- Received by editor(s): September 27, 2006
- Published electronically: October 2, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1135-1168
- MSC (2000): Primary 53D12, 53D40, 53D45, 57R58, 57S05
- DOI: https://doi.org/10.1090/S0002-9947-09-04986-1
- MathSciNet review: 2563724