Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity
HTML articles powered by AMS MathViewer
- by Jaeyoung Byeon
- Trans. Amer. Math. Soc. 362 (2010), 1981-2001
- DOI: https://doi.org/10.1090/S0002-9947-09-04746-1
- Published electronically: November 16, 2009
- PDF | Request permission
Abstract:
Let $\Omega$ be a bounded domain in $\mathbf {R}^n,$ $n \ge 3,$ with a boundary $\partial \Omega \in C^2.$ We consider the following singularly perturbed nonlinear elliptic problem on $\Omega$: \[ \varepsilon ^2 \Delta u - u + f(u) = 0, \ \ u > 0 \textrm { on }\Omega , \quad u = 0 \textrm { on } \partial \Omega , \] where the nonlinearity $f$ is of subcritical growth. Under rather strong conditions on $f,$ it has been known that for small $\varepsilon > 0,$ there exists a mountain pass solution $u_\varepsilon$ of above problem which exhibits a spike layer near a maximum point of the distance function $d$ from $\partial \Omega$ as $\varepsilon \to 0.$ In this paper, we construct a solution $u_\varepsilon$ of above problem which exhibits a spike layer near a maximum point of the distance function under certain conditions on $f$, which we believe to be almost optimal.References
- Frederick J. Almgren Jr. and Elliott H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), no. 4, 683–773. MR 1002633, DOI 10.1090/S0894-0347-1989-1002633-4
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- Jaeyoung Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations 22 (1997), no. 9-10, 1731–1769. MR 1469588, DOI 10.1080/03605309708821317
- Jaeyoung Byeon, Mountain pass solutions for singularly perturbed nonlinear Dirichlet problems, J. Differential Equations 217 (2005), no. 2, 257–281. MR 2168823, DOI 10.1016/j.jde.2005.07.008
- Jaeyoung Byeon and Louis Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185–200. MR 2317788, DOI 10.1007/s00205-006-0019-3
- Jaeyoung Byeon and Louis Jeanjean, Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity, Discrete Contin. Dyn. Syst. 19 (2007), no. 2, 255–269. MR 2335747, DOI 10.3934/dcds.2007.19.255
- Jaeyoung Byeon and Louis Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185–200. MR 2317788, DOI 10.1007/s00205-006-0019-3
- Henri Berestycki, Thierry Gallouët, and Otared Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 5, 307–310 (French, with English summary). MR 734575
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- Philippe Clément and Guido Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 1, 97–121. MR 937538
- E. N. Dancer, Some mountain-pass solutions for small diffusion, Differential Integral Equations 16 (2003), no. 8, 1013–1024. MR 1989600
- Manuel Del Pino and Patricio L. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (1999), no. 3, 883–898. MR 1736974, DOI 10.1512/iumj.1999.48.1596
- Manuel del Pino, Patricio L. Felmer, and Juncheng Wei, On the role of distance function in some singular perturbation problems, Comm. Partial Differential Equations 25 (2000), no. 1-2, 155–177. MR 1737546, DOI 10.1080/03605300008821511
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879, DOI 10.1007/BF01221125
- R. Gardner and L. A. Peletier, The set of positive solutions of semilinear equations in large balls, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), no. 1-2, 53–72. MR 877892, DOI 10.1017/S0308210500019065
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Jaeduck Jang, On spike solutions of singularly perturbed semilinear Dirichlet problem, J. Differential Equations 114 (1994), no. 2, 370–395. MR 1303033, DOI 10.1006/jdeq.1994.1154
- Louis Jeanjean and Kazunaga Tanaka, A remark on least energy solutions in $\textbf {R}^N$, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2399–2408. MR 1974637, DOI 10.1090/S0002-9939-02-06821-1
- Pierre-Louis Lions, Symétrie et compacité dans les espaces de Sobolev, J. Functional Analysis 49 (1982), no. 3, 315–334 (French, with English summary). MR 683027, DOI 10.1016/0022-1236(82)90072-6
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283 (English, with French summary). MR 778974, DOI 10.1016/S0294-1449(16)30422-X
- Yanyan Li and Louis Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1445–1490. MR 1639159, DOI 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.3.CO;2-Q
- Wei-Ming Ni, Izumi Takagi, and Juncheng Wei, On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem: intermediate solutions, Duke Math. J. 94 (1998), no. 3, 597–618. MR 1639546, DOI 10.1215/S0012-7094-98-09424-8
- Wei-Ming Ni and Juncheng Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), no. 7, 731–768. MR 1342381, DOI 10.1002/cpa.3160480704
- Ezzat S. Noussair and Shusen Yan, The effect of the domain geometry in singular perturbation problems, Proc. London Math. Soc. (3) 76 (1998), no. 2, 427–452. MR 1490244, DOI 10.1112/S0024611598000148
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
- Michael Struwe, Variational methods, Springer-Verlag, Berlin, 1990. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1078018, DOI 10.1007/978-3-662-02624-3
- Juncheng Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996), no. 2, 315–333. MR 1404386, DOI 10.1006/jdeq.1996.0120
Bibliographic Information
- Jaeyoung Byeon
- Affiliation: Department of Mathematics, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
- Email: jbyeon@postech.ac.kr
- Received by editor(s): October 4, 2006
- Received by editor(s) in revised form: December 12, 2007
- Published electronically: November 16, 2009
- Additional Notes: This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-313-C00047)
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 1981-2001
- MSC (2000): Primary 35J65, 35J20
- DOI: https://doi.org/10.1090/S0002-9947-09-04746-1
- MathSciNet review: 2574884