Robust ergodic properties in partially hyperbolic dynamics
HTML articles powered by AMS MathViewer
- by Martin Andersson
- Trans. Amer. Math. Soc. 362 (2010), 1831-1867
- DOI: https://doi.org/10.1090/S0002-9947-09-05027-2
- Published electronically: November 18, 2009
Abstract:
We study ergodic properties of partially hyperbolic systems whose central direction is mostly contracting. Earlier work of Bonatti and Viana (2000) about existence and finitude of physical measures is extended to the case of local diffeomorphisms. Moreover, we prove that such systems constitute a $C^2$-open set in which statistical stability is a dense property. In contrast, all mostly contracting systems are shown to be stable under small random perturbations.References
- José F. Alves, Christian Bonatti, and Marcelo Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math. 140 (2000), no. 2, 351–398. MR 1757000, DOI 10.1007/s002220000057
- Flávio Abdenur and Marcelo Viana, Flavors of partial hyperbolicity, Preprint.
- K. Burns, D. Dolgopyat, and Ya. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys. 108 (2002), no. 5-6, 927–942. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR 1933439, DOI 10.1023/A:1019779128351
- Keith Burns, Dmitry Dolgopyat, Yakov Pesin, and Mark Pollicott, Stable ergodicity for partially hyperbolic attractors with negative central exponents, J. Mod. Dyn. 2 (2008), no. 1, 63–81. MR 2366230, DOI 10.3934/jmd.2008.2.63
- Christian Bonatti, Lorenzo J. Díaz, and Raúl Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu 1 (2002), no. 4, 513–541. MR 1954435, DOI 10.1017/S1474748002000142
- Christian Bonatti, Lorenzo J. Díaz, and Marcelo Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005. A global geometric and probabilistic perspective; Mathematical Physics, III. MR 2105774
- Luis Barreira and Yakov Pesin, Smooth ergodic theory and nonuniformly hyperbolic dynamics, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 57–263. With an appendix by Omri Sarig. MR 2186242, DOI 10.1016/S1874-575X(06)80027-5
- Christian Bonatti and Marcelo Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157–193. MR 1749677, DOI 10.1007/BF02810585
- Michael Benedicks and Lai-Sang Young, Sinaĭ-Bowen-Ruelle measures for certain Hénon maps, Invent. Math. 112 (1993), no. 3, 541–576. MR 1218323, DOI 10.1007/BF01232446
- Augusto Armando de Castro Júnior, Backward inducing and exponential decay of correlations for partially hyperbolic attractors, Israel J. Math. 130 (2002), 29–75. MR 1919371, DOI 10.1007/BF02764070
- Augusto Armando de Castro Júnior, Fast mixing for attractors with a mostly contracting central direction, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 17–44. MR 2041259, DOI 10.1017/S0143385703000294
- Dmitry Dolgopyat, On dynamics of mostly contracting diffeomorphisms, Comm. Math. Phys. 213 (2000), no. 1, 181–201. MR 1782146, DOI 10.1007/s002200000238
- Ittai Kan, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 1, 68–74. MR 1254075, DOI 10.1090/S0273-0979-1994-00507-5
- Yuri Kifer, Random perturbations of dynamical systems, Progress in Probability and Statistics, vol. 16, Birkhäuser Boston, Inc., Boston, MA, 1988. MR 1015933, DOI 10.1007/978-1-4615-8181-9
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280
- Jacob Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque 261 (2000), xiii–xiv, 335–347 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755446
- Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 6, 1332–1379, 1440 (Russian). MR 0458490
- Robert R. Phelps, Lectures on Choquet’s theorem, 2nd ed., Lecture Notes in Mathematics, vol. 1757, Springer-Verlag, Berlin, 2001. MR 1835574, DOI 10.1007/b76887
- V. A. Pliss, On a conjecture of Smale, Differencial′nye Uravnenija 8 (1972), 268–282 (Russian). MR 0299909
- Ya. B. Pesin and Ya. G. Sinaĭ, Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 417–438 (1983). MR 721733, DOI 10.1017/S014338570000170X
- Charles Pugh and Michael Shub, Stably ergodic dynamical systems and partial hyperbolicity, J. Complexity 13 (1997), no. 1, 125–179. MR 1449765, DOI 10.1006/jcom.1997.0437
- Enrique R. Pujals and Martín Sambarino, A sufficient condition for robustly minimal foliations, Ergodic Theory Dynam. Systems 26 (2006), no. 1, 281–289. MR 2201949, DOI 10.1017/S0143385705000568
- David Ruelle, A measure associated with axiom-A attractors, Amer. J. Math. 98 (1976), no. 3, 619–654. MR 415683, DOI 10.2307/2373810
- Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 0399421
- Ali Tahzibi, Stably ergodic diffeomorphisms which are not partially hyperbolic, Israel J. Math. 142 (2004), 315–344. MR 2085722, DOI 10.1007/BF02771539
- Masato Tsujii, Physical measures for partially hyperbolic surface endomorphisms, Acta Math. 194 (2005), no. 1, 37–132. MR 2231338, DOI 10.1007/BF02392516
- Carlos H. Vásquez, Statistical stability for diffeomorphisms with dominated splitting, Ergodic Theory Dynam. Systems 27 (2007), no. 1, 253–283. MR 2297096, DOI 10.1017/S0143385706000721
- Lai-Sang Young, Stochastic stability of hyperbolic attractors, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 311–319. MR 857204, DOI 10.1017/S0143385700003473
Bibliographic Information
- Martin Andersson
- Affiliation: Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brasil
- Address at time of publication: Departamento de Matemática Aplicada, Universidade Federal Fluminense, Rua Mário Santos Braga, s/n, Campus do Valonguinho, 24020-140, Centro Niterói - RJ Brazil
- Email: martin@mat.uff.br
- Received by editor(s): August 20, 2007
- Published electronically: November 18, 2009
- Additional Notes: This work was supported by CNPq (Brazil)
- © Copyright 2009 by the author
- Journal: Trans. Amer. Math. Soc. 362 (2010), 1831-1867
- MSC (2000): Primary 37D25, 37D30, 37C40
- DOI: https://doi.org/10.1090/S0002-9947-09-05027-2
- MathSciNet review: 2574879