## Pfaffian presentations of elliptic normal curves

HTML articles powered by AMS MathViewer

- by Tom Fisher PDF
- Trans. Amer. Math. Soc.
**362**(2010), 2525-2540 Request permission

## Abstract:

We investigate certain alternating matrices of linear forms whose Pfaffians generate the homogeneous ideal of an elliptic normal curve, or one of its higher secant varieties.## References

- Allan Adler and S. Ramanan,
*Moduli of abelian varieties*, Lecture Notes in Mathematics, vol. 1644, Springer-Verlag, Berlin, 1996. MR**1621185**, DOI 10.1007/BFb0093659 - M. F. Atiyah,
*Vector bundles over an elliptic curve*, Proc. London Math. Soc. (3)**7**(1957), 414–452. MR**131423**, DOI 10.1112/plms/s3-7.1.414 - Alf Aure, Wolfram Decker, Klaus Hulek, Sorin Popescu, and Kristian Ranestad,
*Syzygies of abelian and bielliptic surfaces in $\textbf {P}^4$*, Internat. J. Math.**8**(1997), no. 7, 849–919. MR**1482969**, DOI 10.1142/S0129167X97000421 - Winfried Bruns and Jürgen Herzog,
*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956** - David A. Buchsbaum and David Eisenbud,
*Gorenstein ideals of height $3$*, Seminar D. Eisenbud/B. Singh/W. Vogel, Vol. 2, Teubner-Texte zur Mathematik, vol. 48, Teubner, Leipzig, 1982, pp. 30–48. MR**686456** - David A. Buchsbaum and David Eisenbud,
*Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$*, Amer. J. Math.**99**(1977), no. 3, 447–485. MR**453723**, DOI 10.2307/2373926 - David Eisenbud,
*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960**, DOI 10.1007/978-1-4612-5350-1 - David Eisenbud, Jee Koh, and Michael Stillman,
*Determinantal equations for curves of high degree*, Amer. J. Math.**110**(1988), no. 3, 513–539. MR**944326**, DOI 10.2307/2374621 - T.A. Fisher,
*On 5 and 7 descents for elliptic curves*, Ph.D. thesis, University of Cambridge, 2000. - Mark Gross and Sorin Popescu,
*Equations of $(1,d)$-polarized abelian surfaces*, Math. Ann.**310**(1998), no. 2, 333–377. MR**1602020**, DOI 10.1007/s002080050151 - Klaus Hulek,
*Projective geometry of elliptic curves*, Astérisque**137**(1986), 143 (English, with French summary). MR**845383** - F. Klein, Über die elliptischen Normalkurven der $n$-ten Ordnung (1885), in
*Gesammelte Mathematische Abhandlungen, 3: Elliptische Funktionen etc.*, R. Fricke et al. (eds.), Springer (1923). - A. J. Knight,
*Primals passing multiply through elliptic normal curves*, Proc. London Math. Soc. (3)**23**(1971), 445–458. MR**291173**, DOI 10.1112/plms/s3-23.3.445 - Andrew R. Kustin and Matthew Miller,
*Constructing big Gorenstein ideals from small ones*, J. Algebra**85**(1983), no. 2, 303–322. MR**725084**, DOI 10.1016/0021-8693(83)90096-0 - Herbert Lange,
*Higher secant varieties of curves and the theorem of Nagata on ruled surfaces*, Manuscripta Math.**47**(1984), no. 1-3, 263–269. MR**744323**, DOI 10.1007/BF01174597 - M. S. Ravi,
*Determinantal equations for secant varieties of curves*, Comm. Algebra**22**(1994), no. 8, 3103–3106. MR**1272376**, DOI 10.1080/00927879408825016 - T.G. Room,
*The geometry of determinantal loci*, Cambridge University Press, 1938. - Hans-Christian Graf v. Bothmer and Klaus Hulek,
*Geometric syzygies of elliptic normal curves and their secant varieties*, Manuscripta Math.**113**(2004), no. 1, 35–68. MR**2135560**, DOI 10.1007/s00229-003-0421-1 - Jacques Vélu,
*Courbes elliptiques munies d’un sous-groupe $\textbf {Z}/n\textbf {Z}\times {\bf \mu }_{n}$*, Bull. Soc. Math. France Mém.**57**(1978), 5–152 (French). MR**507751**

## Additional Information

**Tom Fisher**- Affiliation: Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
- MR Author ID: 678544
- Email: T.A.Fisher@dpmms.cam.ac.uk
- Received by editor(s): June 1, 2006
- Received by editor(s) in revised form: March 17, 2008
- Published electronically: December 11, 2009
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**362**(2010), 2525-2540 - MSC (2010): Primary 14H52; Secondary 14M12
- DOI: https://doi.org/10.1090/S0002-9947-09-04876-4
- MathSciNet review: 2584609