Pfaffian presentations of elliptic normal curves
Author:
Tom Fisher
Journal:
Trans. Amer. Math. Soc. 362 (2010), 2525-2540
MSC (2010):
Primary 14H52; Secondary 14M12
DOI:
https://doi.org/10.1090/S0002-9947-09-04876-4
Published electronically:
December 11, 2009
MathSciNet review:
2584609
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate certain alternating matrices of linear forms whose Pfaffians generate the homogeneous ideal of an elliptic normal curve, or one of its higher secant varieties.
- [AR] Allan Adler and S. Ramanan, Moduli of abelian varieties, Lecture Notes in Mathematics, vol. 1644, Springer-Verlag, Berlin, 1996. MR 1621185
- [A] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 0131423, https://doi.org/10.1112/plms/s3-7.1.414
- [ADHPR] Alf Aure, Wolfram Decker, Klaus Hulek, Sorin Popescu, and Kristian Ranestad, Syzygies of abelian and bielliptic surfaces in 𝑃⁴, Internat. J. Math. 8 (1997), no. 7, 849–919. MR 1482969, https://doi.org/10.1142/S0129167X97000421
- [BH] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- [BE1] David A. Buchsbaum and David Eisenbud, Gorenstein ideals of height 3, Seminar D. Eisenbud/B. Singh/W. Vogel, Vol. 2, Teubner-Texte zur Math., vol. 48, Teubner, Leipzig, 1982, pp. 30–48. MR 686456
- [BE2] David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, https://doi.org/10.2307/2373926
- [E] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- [EKS] David Eisenbud, Jee Koh, and Michael Stillman, Determinantal equations for curves of high degree, Amer. J. Math. 110 (1988), no. 3, 513–539. MR 944326, https://doi.org/10.2307/2374621
- [F] T.A. Fisher, On 5 and 7 descents for elliptic curves, Ph.D. thesis, University of Cambridge, 2000.
- [GP] Mark Gross and Sorin Popescu, Equations of (1,𝑑)-polarized abelian surfaces, Math. Ann. 310 (1998), no. 2, 333–377. MR 1602020, https://doi.org/10.1007/s002080050151
- [H] Klaus Hulek, Projective geometry of elliptic curves, Astérisque 137 (1986), 143 (English, with French summary). MR 845383
- [Kl]
F. Klein, Über die elliptischen Normalkurven der
-ten Ordnung (1885), in Gesammelte Mathematische Abhandlungen, 3: Elliptische Funktionen etc., R. Fricke et al. (eds.), Springer (1923).
- [Kn] A. J. Knight, Primals passing multiply through elliptic normal curves, Proc. London Math. Soc. (3) 23 (1971), 445–458. MR 0291173, https://doi.org/10.1112/plms/s3-23.3.445
- [KM] Andrew R. Kustin and Matthew Miller, Constructing big Gorenstein ideals from small ones, J. Algebra 85 (1983), no. 2, 303–322. MR 725084, https://doi.org/10.1016/0021-8693(83)90096-0
- [L] Herbert Lange, Higher secant varieties of curves and the theorem of Nagata on ruled surfaces, Manuscripta Math. 47 (1984), no. 1-3, 263–269. MR 744323, https://doi.org/10.1007/BF01174597
- [Ra] M. S. Ravi, Determinantal equations for secant varieties of curves, Comm. Algebra 22 (1994), no. 8, 3103–3106. MR 1272376, https://doi.org/10.1080/00927879408825016
- [Ro] T.G. Room, The geometry of determinantal loci, Cambridge University Press, 1938.
- [vBH] Hans-Christian Graf v. Bothmer and Klaus Hulek, Geometric syzygies of elliptic normal curves and their secant varieties, Manuscripta Math. 113 (2004), no. 1, 35–68. MR 2135560, https://doi.org/10.1007/s00229-003-0421-1
- [V] Jacques Vélu, Courbes elliptiques munies d’un sous-groupe 𝑍/𝑛𝑍×𝜇_{𝑛}, Bull. Soc. Math. France Mém. 57 (1978), 5–152 (French). MR 507751
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14H52, 14M12
Retrieve articles in all journals with MSC (2010): 14H52, 14M12
Additional Information
Tom Fisher
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
Email:
T.A.Fisher@dpmms.cam.ac.uk
DOI:
https://doi.org/10.1090/S0002-9947-09-04876-4
Received by editor(s):
June 1, 2006
Received by editor(s) in revised form:
March 17, 2008
Published electronically:
December 11, 2009
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.