Divergence in lattices in semisimple Lie groups and graphs of groups
HTML articles powered by AMS MathViewer
- by Cornelia Druţu, Shahar Mozes and Mark Sapir PDF
- Trans. Amer. Math. Soc. 362 (2010), 2451-2505 Request permission
Corrigendum: Trans. Amer. Math. Soc. 370 (2018), 749-754.
Abstract:
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $\le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having cut-points in their asymptotic cones. That property is weaker than the property of having Morse (rank 1) quasi-geodesics. Using our characterization of Morse quasi-geodesics, we give a new proof of the theorem of Farb-Kaimanovich-Masur that states that mapping class groups cannot contain copies of irreducible lattices in semi-simple Lie groups of higher ranks. It also gives a generalization of the result of Birman-Lubotzky-McCarthy about solvable subgroups of mapping class groups not covered by the Tits alternative of Ivanov and McCarthy.
We show that any group acting acylindrically on a simplicial tree or a locally compact hyperbolic graph always has “many” periodic Morse quasi-geodesics (i.e. Morse elements), so its divergence functions are never linear. We also show that the same result holds in many cases when the hyperbolic graph satisfies Bowditch’s properties that are weaker than local compactness. This gives a new proof of Behrstock’s result that every pseudo-Anosov element in a mapping class group is Morse.
On the other hand, we conjecture that lattices in semi-simple Lie groups of higher rank always have linear divergence. We prove it in the case when the $\mathbb {Q}$-rank is 1 and when the lattice is $\operatorname {SL}_n(\mathcal {O}_{\mathcal {S}})$ where $n\ge 3$, $S$ is a finite set of valuations of a number field $K$ including all infinite valuations, and $\mathcal {O}_{\mathcal {S}}$ is the corresponding ring of $S$-integers.
References
- J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short, Notes on word hyperbolic groups, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 3–63. Edited by Short. MR 1170363
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Werner Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin. MR 1377265, DOI 10.1007/978-3-0348-9240-7
- Werner Ballmann and Michael Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 169–209 (1996). MR 1383216, DOI 10.1007/BF02698640
- Werner Ballmann and Michael Brin, Diameter rigidity of spherical polyhedra, Duke Math. J. 97 (1999), no. 2, 235–259. MR 1682245, DOI 10.1215/S0012-7094-99-09711-9
- Werner Ballmann and Sergei Buyalo, Periodic rank one geodesics in Hadamard spaces, Geometric and probabilistic structures in dynamics, Contemp. Math., vol. 469, Amer. Math. Soc., Providence, RI, 2008, pp. 19–27. MR 2478464, DOI 10.1090/conm/469/09159
- Jason A. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006), 1523–1578. MR 2255505, DOI 10.2140/gt.2006.10.1523
- Mladen Bestvina and Koji Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69–89. MR 1914565, DOI 10.2140/gt.2002.6.69
- Joan S. Birman, Alex Lubotzky, and John McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983), no. 4, 1107–1120. MR 726319, DOI 10.1215/S0012-7094-83-05046-9
- Brian H. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008), no. 2, 281–300. MR 2367021, DOI 10.1007/s00222-007-0081-y
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- L. van den Dries and A. J. Wilkie, Gromov’s theorem on groups of polynomial growth and elementary logic, J. Algebra 89 (1984), no. 2, 349–374. MR 751150, DOI 10.1016/0021-8693(84)90223-0
- C. Druţu, Nondistorsion des horosphères dans des immeubles euclidiens et dans des espaces symétriques, Geom. Funct. Anal. 7 (1997), no. 4, 712–754 (French, with English summary). MR 1465600, DOI 10.1007/s000390050024
- Cornelia Druţu, Remplissage dans des réseaux de $\mathbf Q$-rang 1 et dans des groupes résolubles, Pacific J. Math. 185 (1998), no. 2, 269–305 (French, with English summary). MR 1659046, DOI 10.2140/pjm.1998.185.269
- Cornelia Druţu, Quasi-isometry invariants and asymptotic cones, Internat. J. Algebra Comput. 12 (2002), no. 1-2, 99–135. International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000). MR 1902363, DOI 10.1142/S0218196702000948
- Cornelia Druţu, Filling in solvable groups and in lattices in semisimple groups, Topology 43 (2004), no. 5, 983–1033. MR 2079992, DOI 10.1016/j.top.2003.11.004
- —, Relatively hyperbolic groups: geometry and quasi-isometric invariance, preprint, arXiv:math.GR/0605211, 2006, to appear in Comment. Math. Helv.
- Cornelia Druţu and Mark Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), no. 5, 959–1058. With an appendix by Denis Osin and Mark Sapir. MR 2153979, DOI 10.1016/j.top.2005.03.003
- Cornelia Druţu and Mark V. Sapir, Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups, Adv. Math. 217 (2008), no. 3, 1313–1367. MR 2383901, DOI 10.1016/j.aim.2007.08.012
- M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985), no. 3, 449–457. MR 807066, DOI 10.1007/BF01388581
- Benson Farb, Alexander Lubotzky, and Yair Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001), no. 3, 581–597. MR 1813237, DOI 10.1215/S0012-7094-01-10636-4
- Benson Farb and Howard Masur, Superrigidity and mapping class groups, Topology 37 (1998), no. 6, 1169–1176. MR 1632912, DOI 10.1016/S0040-9383(97)00099-2
- H. Garland and M. S. Raghunathan, Fundamental domains for lattices in rank one semisimple Lie groups, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 309–313. MR 280642, DOI 10.1073/pnas.62.2.309
- S. M. Gersten, Divergence in $3$-manifold groups, Geom. Funct. Anal. 4 (1994), no. 6, 633–647. MR 1302334, DOI 10.1007/BF01896656
- S. M. Gersten, Quadratic divergence of geodesics in $\textrm {CAT}(0)$ spaces, Geom. Funct. Anal. 4 (1994), no. 1, 37–51. MR 1254309, DOI 10.1007/BF01898360
- S. M. Gersten (ed.), Essays in group theory, Mathematical Sciences Research Institute Publications, vol. 8, Springer-Verlag, New York, 1987. MR 919826, DOI 10.1007/978-1-4613-9586-7
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- N. V. Ivanov, Algebraic properties of the Teichmüller modular group, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 786–789 (Russian). MR 745513
- Nikolai V. Ivanov, Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, vol. 115, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose and revised by the author. MR 1195787, DOI 10.1090/mmono/115
- Vadim A. Kaimanovich and Howard Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996), no. 2, 221–264. MR 1395719, DOI 10.1007/s002220050074
- M. Kapovich and B. Leeb, $3$-manifold groups and nonpositive curvature, Geom. Funct. Anal. 8 (1998), no. 5, 841–852. MR 1650098, DOI 10.1007/s000390050076
- Michael Kapovich, Bruce Kleiner, and Bernhard Leeb, Quasi-isometries and the de Rham decomposition, Topology 37 (1998), no. 6, 1193–1211. MR 1632904, DOI 10.1016/S0040-9383(97)00091-8
- Bruce Kleiner and Bernhard Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197 (1998). MR 1608566, DOI 10.1007/BF02698902
- Malik Koubi, Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 5, 1441–1453 (French, with English and French summaries). MR 1662255, DOI 10.5802/aif.1661
- Linus Kramer, Saharon Shelah, Katrin Tent, and Simon Thomas, Asymptotic cones of finitely presented groups, Adv. Math. 193 (2005), no. 1, 142–173. MR 2132762, DOI 10.1016/j.aim.2004.04.012
- Alexander Lubotzky, Shahar Mozes, and M. S. Raghunathan, Cyclic subgroups of exponential growth and metrics on discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 8, 735–740 (English, with English and French summaries). MR 1244421
- Alexander Lubotzky, Shahar Mozes, and M. S. Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 5–53 (2001). MR 1828742, DOI 10.1007/BF02698740
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974. MR 1791145, DOI 10.1007/PL00001643
- John McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985), no. 2, 583–612. MR 800253, DOI 10.1090/S0002-9947-1985-0800253-8
- A.Yu. Olshanskii, D. V. Osin, and M. V. Sapir, Lacunary hyperbolic groups, preprint arXiv:math.GR/0701365, with an appendix by M. Kapovich and B. Kleiner, 2005.
- Denis V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100. MR 2182268, DOI 10.1090/memo/0843
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1
- John Stallings, Group theory and three-dimensional manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969. MR 0415622
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
Additional Information
- Cornelia Druţu
- Affiliation: Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, United Kingdom
- Email: drutu@maths.ox.ac.uk
- Shahar Mozes
- Affiliation: Institute of Mathematics, Hebrew University, Jerusalem, Israel
- MR Author ID: 264125
- Mark Sapir
- Affiliation: Department of Mathematics, SC1522, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 189574
- Email: m.sapir@vanderbilt.edu
- Received by editor(s): February 7, 2008
- Published electronically: December 16, 2009
- Additional Notes: The work of the first author was partially supported by the ANR grant GGPG. The research of the second and the third authors was supported in part by a BSF U.S.A.-Israeli grant. In addition, the research of the third author was supported by NSF grants DMS-0455881 and DMS-0700811. All three authors worked on this paper while visiting the Max Planck Institute in Bonn.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 2451-2505
- MSC (2000): Primary 20F67; Secondary 20F65
- DOI: https://doi.org/10.1090/S0002-9947-09-04882-X
- MathSciNet review: 2584607