## On asymptotic Teichmüller space

HTML articles powered by AMS MathViewer

- by Alastair Fletcher PDF
- Trans. Amer. Math. Soc.
**362**(2010), 2507-2523 Request permission

## Abstract:

In this article we prove that for any hyperbolic Riemann surface $M$ of infinite analytic type, the little Bers space $Q_{0}(M)$ is isomorphic to $c_{0}$. As a consequence of this result, if $M$ is such a Riemann surface, then its asymptotic Teichmüller space $AT(M)$ is bi-Lipschitz equivalent to a bounded open subset of the Banach space $l^{\infty }/c_{0}$. Further, if $M$ and $N$ are two such Riemann surfaces, their asymptotic Teichmüller spaces, $AT(M)$ and $AT(N)$, are locally bi-Lipschitz equivalent.## References

- Peter Duren and Alexander Schuster,
*Bergman spaces*, Mathematical Surveys and Monographs, vol. 100, American Mathematical Society, Providence, RI, 2004. MR**2033762**, DOI 10.1090/surv/100 - C.J.Earle, F.P.Gardiner and N.Lakic, Teichmüller spaces with asymptotic conformal equivalence, I.H.E.S. preprint, 1995.
- C. J. Earle, F. P. Gardiner, and N. Lakic,
*Asymptotic Teichmüller space. I. The complex structure*, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998) Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 17–38. MR**1759668**, DOI 10.1090/conm/256/03995 - Clifford J. Earle, Vladimir Markovic, and Dragomir Saric,
*Barycentric extension and the Bers embedding for asymptotic Teichmüller space*, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI, 2002, pp. 87–105. MR**1940165**, DOI 10.1090/conm/311/05448 - A. Fletcher,
*Local rigidity of infinite-dimensional Teichmüller spaces*, J. London Math. Soc. (2)**74**(2006), no. 1, 26–40. MR**2254550**, DOI 10.1112/S0024610706023003 - A. Fletcher and V. Markovic,
*Quasiconformal maps and Teichmüller theory*, Oxford Graduate Texts in Mathematics, vol. 11, Oxford University Press, Oxford, 2007. MR**2269887** - Frederick P. Gardiner,
*Teichmüller theory and quadratic differentials*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR**903027** - Frederick P. Gardiner and Nikola Lakic,
*Quasiconformal Teichmüller theory*, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR**1730906**, DOI 10.1090/surv/076 - Frederick P. Gardiner and Dennis P. Sullivan,
*Symmetric structures on a closed curve*, Amer. J. Math.**114**(1992), no. 4, 683–736. MR**1175689**, DOI 10.2307/2374795 - John Hamal Hubbard,
*Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1*, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR**2245223** - Irwin Kra,
*Automorphic forms and Kleinian groups*, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1972. MR**0357775** - Olli Lehto,
*Univalent functions and Teichmüller spaces*, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR**867407**, DOI 10.1007/978-1-4613-8652-0 - J. Lindenstrauss and A. Pełczyński,
*Contributions to the theory of the classical Banach spaces*, J. Functional Analysis**8**(1971), 225–249. MR**0291772**, DOI 10.1016/0022-1236(71)90011-5 - Wolfgang Lusky,
*On the structure of $Hv_0(D)$ and $hv_0(D)$*, Math. Nachr.**159**(1992), 279–289. MR**1237115**, DOI 10.1002/mana.19921590119 - Wolfgang Lusky,
*On the isomorphism classes of weighted spaces of harmonic and holomorphic functions*, Studia Math.**175**(2006), no. 1, 19–45. MR**2261698**, DOI 10.4064/sm175-1-2 - Vladimir Markovic,
*Biholomorphic maps between Teichmüller spaces*, Duke Math. J.**120**(2003), no. 2, 405–431. MR**2019982**, DOI 10.1215/S0012-7094-03-12028-1 - Miodrag Mateljević,
*The dual of the Bergman space defined on a hyperbolic plane domain*, Publ. Inst. Math. (Beograd) (N.S.)**56(70)**(1994), 135–139. MR**1349080** - Hideki Miyachi,
*A reduction for asymptotic Teichmüller spaces*, Ann. Acad. Sci. Fenn. Math.**32**(2007), no. 1, 55–71. MR**2297877** - H.Miyachi, Image of Asymptotic Bers Map,
*J. Math. Soc. Japan*,**60**, No. 4, 1255–1276, 2008. - Subhashis Nag,
*The complex analytic theory of Teichmüller spaces*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR**927291** - A. Pełczyński,
*Projections in certain Banach spaces*, Studia Math.**19**(1960), 209–228. MR**126145**, DOI 10.4064/sm-19-2-209-228 - Joel H. Shapiro,
*Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces*, Duke Math. J.**43**(1976), no. 1, 187–202. MR**500100** - A. L. Shields and D. L. Williams,
*Bonded projections, duality, and multipliers in spaces of analytic functions*, Trans. Amer. Math. Soc.**162**(1971), 287–302. MR**283559**, DOI 10.1090/S0002-9947-1971-0283559-3 - P. Wojtaszczyk,
*$H_{p}$-spaces, $p\leq 1$, and spline systems*, Studia Math.**77**(1984), no. 3, 289–320. MR**745285**, DOI 10.4064/sm-77-3-289-320 - Guowu Yao,
*Harmonic maps and asymptotic Teichmüller space*, Manuscripta Math.**122**(2007), no. 4, 375–389. MR**2300050**, DOI 10.1007/s00229-007-0075-5

## Additional Information

**Alastair Fletcher**- Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
- MR Author ID: 749646
- Email: Alastair.Fletcher@warwick.ac.uk
- Received by editor(s): February 29, 2008
- Published electronically: December 2, 2009
- Additional Notes: The author was supported by EPSRC grant EP/D065321/1
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**362**(2010), 2507-2523 - MSC (2010): Primary 30F60
- DOI: https://doi.org/10.1090/S0002-9947-09-04944-7
- MathSciNet review: 2584608