Positive polynomials and sequential closures of quadratic modules
HTML articles powered by AMS MathViewer
- by Tim Netzer
- Trans. Amer. Math. Soc. 362 (2010), 2619-2639
- DOI: https://doi.org/10.1090/S0002-9947-09-05001-6
- Published electronically: December 14, 2009
- PDF | Request permission
Abstract:
Let $\mathcal {S}=\{x\in \mathbb {R}^n\mid f_1(x)\geq 0,\ldots ,f_s(x)\geq 0\}$ be a basic closed semi-algebraic set in $\mathbb {R}^n$ and let $\mathrm {PO}(f_1,\ldots ,f_s)$ be the corresponding preordering in $\mathbb {R}[X_1,\ldots ,X_n]$. We examine for which polynomials $f$ there exist identities \[ f+\varepsilon q\in \mathrm {PO}(f_1,\ldots ,f_s) \mbox { for all } \varepsilon >0.\] These are precisely the elements of the sequential closure of $\mathrm {PO}(f_1,\ldots ,f_s)$ with respect to the finest locally convex topology. We solve the open problem from Kuhlmann, Marshall, and Schwartz (2002, 2005), whether this equals the double dual cone \[ \mathrm {PO}(f_1,\ldots ,f_s)^{\vee \vee },\] by providing a counterexample. We then prove a theorem that allows us to obtain identities for polynomials as above, by looking at a family of fibre-preorderings, constructed from bounded polynomials. These fibre-preorderings are easier to deal with than the original preordering in general. For a large class of examples we are thus able to show that either every polynomial $f$ that is nonnegative on $\mathcal {S}$ admits such representations, or at least the polynomials from $\mathrm {PO}(f_1,\ldots ,f_s)^{\vee \vee }$ do. The results also hold in the more general setup of arbitrary commutative algebras and quadratic modules instead of preorderings.References
- Torben Maack Bisgaard, The topology of finitely open sets is not a vector space topology, Arch. Math. (Basel) 60 (1993), no. 6, 546–552. MR 1216700, DOI 10.1007/BF01236081
- N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295, DOI 10.1007/978-3-642-61715-7
- J. Cimprič, S. Kuhlmann, M. Marshall: Positivity in Power Series Rings, Advances in Geometry, to appear.
- J. Cimprič, T. Netzer, M. Marshall: On the Real Multidimensional Rational $K$-Moment Problem, to appear in Trans. Amer. Math. Soc.
- J. Cimprič, T. Netzer, M. Marshall: Closures of Quadratic Modules, to appear in Israel J. Math.
- William Fulton, Algebraic curves. An introduction to algebraic geometry, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes written with the collaboration of Richard Weiss. MR 0313252
- E. K. Haviland, On the Momentum Problem for Distribution Functions in More Than One Dimension. II, Amer. J. Math. 58 (1936), no. 1, 164–168. MR 1507139, DOI 10.2307/2371063
- Thomas Jacobi, A representation theorem for certain partially ordered commutative rings, Math. Z. 237 (2001), no. 2, 259–273. MR 1838311, DOI 10.1007/PL00004868
- Thomas Jacobi and Alexander Prestel, Distinguished representations of strictly positive polynomials, J. Reine Angew. Math. 532 (2001), 223–235. MR 1817508, DOI 10.1515/crll.2001.023
- S. Kuhlmann and M. Marshall, Positivity, sums of squares and the multi-dimensional moment problem, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4285–4301. MR 1926876, DOI 10.1090/S0002-9947-02-03075-1
- S. Kuhlmann, M. Marshall, and N. Schwartz, Positivity, sums of squares and the multi-dimensional moment problem. II, Adv. Geom. 5 (2005), no. 4, 583–606. MR 2174483, DOI 10.1515/advg.2005.5.4.583
- Jean B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2000/01), no. 3, 796–817. MR 1814045, DOI 10.1137/S1052623400366802
- Murray Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008. MR 2383959, DOI 10.1090/surv/146
- M. Marshall: Polynomials Non-negative on a Strip, Proc. of the Amer. Math. Soc., to appear.
- Tim Netzer, An elementary proof of Schmüdgen’s theorem on the moment problem of closed semi-algebraic sets, Proc. Amer. Math. Soc. 136 (2008), no. 2, 529–537. MR 2358493, DOI 10.1090/S0002-9939-07-09087-9
- Tim Netzer, Stability of quadratic modules, Manuscripta Math. 129 (2009), no. 2, 251–271. MR 2505804, DOI 10.1007/s00229-009-0258-3
- D. Plaumann: Bounded Polynomials, Sums of Squares and the Moment Problem, Doctoral Thesis, University of Konstanz (2008).
- Victoria Powers and Claus Scheiderer, The moment problem for non-compact semialgebraic sets, Adv. Geom. 1 (2001), no. 1, 71–88. MR 1823953, DOI 10.1515/advg.2001.005
- Victoria Powers, Positive polynomials and the moment problem for cylinders with compact cross-section, J. Pure Appl. Algebra 188 (2004), no. 1-3, 217–226. MR 2030815, DOI 10.1016/j.jpaa.2003.10.009
- Alexander Prestel and Charles N. Delzell, Positive polynomials, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. From Hilbert’s 17th problem to real algebra. MR 1829790, DOI 10.1007/978-3-662-04648-7
- Mihai Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), no. 3, 969–984. MR 1254128, DOI 10.1512/iumj.1993.42.42045
- Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York-Berlin, 1971. Third printing corrected. MR 0342978, DOI 10.1007/978-1-4684-9928-5
- Claus Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1039–1069. MR 1675230, DOI 10.1090/S0002-9947-99-02522-2
- Claus Scheiderer, Sums of squares on real algebraic curves, Math. Z. 245 (2003), no. 4, 725–760. MR 2020709, DOI 10.1007/s00209-003-0568-1
- Claus Scheiderer, Distinguished representations of non-negative polynomials, J. Algebra 289 (2005), no. 2, 558–573. MR 2142385, DOI 10.1016/j.jalgebra.2005.01.043
- Claus Scheiderer, Non-existence of degree bounds for weighted sums of squares representations, J. Complexity 21 (2005), no. 6, 823–844. MR 2182447, DOI 10.1016/j.jco.2005.04.001
- Konrad Schmüdgen, The $K$-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206. MR 1092173, DOI 10.1007/BF01446568
- Konrad Schmüdgen, On the moment problem of closed semi-algebraic sets, J. Reine Angew. Math. 558 (2003), 225–234. MR 1979186, DOI 10.1515/crll.2003.040
- Markus Schweighofer, Iterated rings of bounded elements and generalizations of Schmüdgen’s Positivstellensatz, J. Reine Angew. Math. 554 (2003), 19–45. MR 1952167, DOI 10.1515/crll.2003.004
- Markus Schweighofer, Optimization of polynomials on compact semialgebraic sets, SIAM J. Optim. 15 (2005), no. 3, 805–825. MR 2142861, DOI 10.1137/S1052623403431779
Bibliographic Information
- Tim Netzer
- Affiliation: Fakultät für Mathematik und Informatik, Universität Leipzig, PF 100920, 04009 Leipzig, Germany
- Email: tim.netzer@math.uni-leipzig.de
- Received by editor(s): July 21, 2008
- Published electronically: December 14, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 2619-2639
- MSC (2000): Primary 44A60, 14P10, 13J30; Secondary 11E25
- DOI: https://doi.org/10.1090/S0002-9947-09-05001-6
- MathSciNet review: 2584613