Actions of semisimple Lie groups preserving a degenerate Riemannian metric
HTML articles powered by AMS MathViewer
- by E. Bekkara, C. Frances and A. Zeghib
- Trans. Amer. Math. Soc. 362 (2010), 2415-2434
- DOI: https://doi.org/10.1090/S0002-9947-09-05030-2
- Published electronically: December 17, 2009
- PDF | Request permission
Abstract:
We prove a rigidity of the lightcone in Minkowski space. It is (essentially) the unique space endowed with a lightlike metric and supporting an isometric nonproper action of a semisimple Lie group.References
- S. Adams, Orbit nonproper actions on Lorentz manifolds, Geom. Funct. Anal. 11 (2001), no. 2, 201–243. MR 1837363, DOI 10.1007/PL00001674
- Scot Adams, Dynamics of simple Lie groups on Lorentz manifolds, Geom. Dedicata 105 (2004), 1–12. MR 2057240, DOI 10.1023/B:GEOM.0000024726.35086.c4
- Maks A. Akivis and Vladislav V. Goldberg, On some methods of construction of invariant normalizations of lightlike hypersurfaces, Differential Geom. Appl. 12 (2000), no. 2, 121–143. MR 1758845, DOI 10.1016/S0926-2245(00)00008-5
- A. Arouche, M. Deffaf, and A. Zeghib, On Lorentz dynamics: from group actions to warped products via homogeneous spaces, Trans. Amer. Math. Soc. 359 (2007), no. 3, 1253–1263. MR 2262849, DOI 10.1090/S0002-9947-06-04279-6
- Esmaa Bekkara, Charles Frances, and Abdelghani Zeghib, On lightlike geometry: isometric actions, and rigidity aspects, C. R. Math. Acad. Sci. Paris 343 (2006), no. 5, 317–321 (English, with English and French summaries). MR 2253050, DOI 10.1016/j.crma.2006.07.007
- Francesco Bonsante, Flat spacetimes with compact hyperbolic Cauchy surfaces, J. Differential Geom. 69 (2005), no. 3, 441–521. MR 2170277
- Yves Carrière, Flots riemanniens, Astérisque 116 (1984), 31–52 (French). Transversal structure of foliations (Toulouse, 1982). MR 755161
- G. D’Ambra and M. Gromov, Lectures on transformation groups: geometry and dynamics, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 19–111. MR 1144526
- Mohamed Deffaf, Karin Melnick, and Abdelghani Zeghib, Actions of noncompact semisimple groups on Lorentz manifolds, Geom. Funct. Anal. 18 (2008), no. 2, 463–488. MR 2421545, DOI 10.1007/s00039-008-0659-6
- Krishan L. Duggal and Aurel Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and its Applications, vol. 364, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1383318, DOI 10.1007/978-94-017-2089-2
- Patrick B. Eberlein, Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. MR 1441541
- F. G. Friedlander, The wave equation on a curved space-time, Cambridge Monographs on Mathematical Physics, No. 2, Cambridge University Press, Cambridge-New York-Melbourne, 1975. MR 0460898
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR 0424186, DOI 10.1017/CBO9780511524646
- Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
- Toshiyuki Kobayashi and Taro Yoshino, Compact Clifford-Klein forms of symmetric spaces—revisited, Pure Appl. Math. Q. 1 (2005), no. 3, Special Issue: In memory of Armand Borel., 591–663. MR 2201328, DOI 10.4310/PAMQ.2005.v1.n3.a6
- Nadine Kowalsky, Noncompact simple automorphism groups of Lorentz manifolds and other geometric manifolds, Ann. of Math. (2) 144 (1996), no. 3, 611–640. MR 1426887, DOI 10.2307/2118566
- Demir N. Kupeli, Singular semi-Riemannian geometry, Mathematics and its Applications, vol. 366, Kluwer Academic Publishers Group, Dordrecht, 1996. With the collaboration of Eduardo García-Río on Part III. MR 1392222, DOI 10.1007/978-94-015-8761-7
- T. Miernowski, Thesis, école normale supérieure de Lyon, 2005.
- Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463, DOI 10.1007/978-1-4684-8670-4
- Piotr T. Chruściel, On rigidity of analytic black holes, Comm. Math. Phys. 189 (1997), no. 1, 1–7. MR 1478527, DOI 10.1007/s002200050187
- Ivor Robinson and Andrzej Trautman, Integrable optical geometry, Lett. Math. Phys. 10 (1985), no. 2-3, 179–182. MR 815241, DOI 10.1007/BF00398155
- Kevin P. Scannell, Flat conformal structures and the classification of de Sitter manifolds, Comm. Anal. Geom. 7 (1999), no. 2, 325–345. MR 1685590, DOI 10.4310/CAG.1999.v7.n2.a6
- Abdelghani Zeghib, Geodesic foliations in Lorentz $3$-manifolds, Comment. Math. Helv. 74 (1999), no. 1, 1–21. MR 1677118, DOI 10.1007/s000140050073
- A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry groups, Geom. Funct. Anal. 9 (1999), no. 4, 823–854. MR 1719610, DOI 10.1007/s000390050103
Bibliographic Information
- E. Bekkara
- Affiliation: Department of Mathematics and Information, BP1523, ENSET of Oran, 31000 El M’naouar Oran, Algeria
- Email: esmaa.bekkara@gmail.com
- C. Frances
- Affiliation: Laboratoire de Mathématiques, Université Paris-Sud, 91405 Orsay Cedex, France
- Email: charles.frances@math.u-psud.fr
- A. Zeghib
- Affiliation: CNRS, UMPA, École Normale Supérieure de Lyon, 69364 Lyon Cexex 07, France
- Email: zeghib@umpa.ens-lyon.fr
- Received by editor(s): November 26, 2007
- Published electronically: December 17, 2009
- Additional Notes: The first author was partially supported by the project CMEP 05 MDU 641B of the Tassili program.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 2415-2434
- MSC (2010): Primary 53B30, 53C22, 53C50
- DOI: https://doi.org/10.1090/S0002-9947-09-05030-2
- MathSciNet review: 2584605