Noncommutative Poisson structures on orbifolds
HTML articles powered by AMS MathViewer
- by Gilles Halbout and Xiang Tang
- Trans. Amer. Math. Soc. 362 (2010), 2249-2277
- DOI: https://doi.org/10.1090/S0002-9947-09-05079-X
- Published electronically: December 9, 2009
- PDF | Request permission
Abstract:
In this paper, we compute the Gerstenhaber bracket on the Hoch-schild cohomology of $C^\infty (M)\rtimes G$ for a finite group $G$ acting on a compact manifold $M$. Using this computation, we obtain geometric descriptions for all noncommutative Poisson structures on $C^\infty (M)\rtimes G$ when $M$ is a symplectic manifold. We also discuss examples of deformation quantizations of these noncommutative Poisson structures.References
- Anno, R., Multiplicative structure on the Hochschild cohomology of crossed product algebras, preprint: math.QA/0511396.
- Jonathan Block and Ezra Getzler, Quantization of foliations, Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 471–487. MR 1225136
- Weimin Chen and Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1–31. MR 2104605, DOI 10.1007/s00220-004-1089-4
- Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR 823176
- Vasiliy Dolgushev and Pavel Etingof, Hochschild cohomology of quantized symplectic orbifolds and the Chen-Ruan cohomology, Int. Math. Res. Not. 27 (2005), 1657–1688. MR 2152067, DOI 10.1155/IMRN.2005.1657
- Etingof, P., Cherednik and Hecke algebras of varieties with a finite group action, arXiv:math.QA/0406499.
- Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922, DOI 10.1007/s002220100171
- Murray Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59–103. MR 171807, DOI 10.2307/1970484
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933
- G. Hochschild, Bertram Kostant, and Alex Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383–408. MR 142598, DOI 10.1090/S0002-9947-1962-0142598-8
- Halbout, G., Oudom, J., and Tang, X., Deformations of linear Poisson orbifolds, arXiv:0807.0027.
- Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR 2062626, DOI 10.1023/B:MATH.0000027508.00421.bf
- N. Neumaier, M. J. Pflaum, H. B. Posthuma, and X. Tang, Homology of formal deformations of proper étale Lie groupoids, J. Reine Angew. Math. 593 (2006), 117–168. MR 2227141, DOI 10.1515/CRELLE.2006.031
- Alexei Oblomkov, Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not. 18 (2004), 877–912. MR 2037756, DOI 10.1155/S1073792804133072
- Pflaum, M., Posthuma, H., Tang, X., and Tseng, H., Orbifold cup products and ring structures on Hochschild cohomologies, arXiv:0706.0027.
- Xiang Tang, Deformation quantization of pseudo-symplectic (Poisson) groupoids, Geom. Funct. Anal. 16 (2006), no. 3, 731–766. MR 2238946, DOI 10.1007/s00039-006-0567-6
- Tang, X., Quantization of Noncommutative Poisson Manifolds, thesis, U.C. Berkeley, 2004.
- Ping Xu, Noncommutative Poisson algebras, Amer. J. Math. 116 (1994), no. 1, 101–125. MR 1262428, DOI 10.2307/2374983
Bibliographic Information
- Gilles Halbout
- Affiliation: Institut de Mathématiques et de Mod’elisation de Montpellier I3M, UMR 5149, Université de Montpellier 2, F-34095 Montpellier cedex 5, France
- Email: ghalbout@darboux.math.univ-montp2.fr
- Xiang Tang
- Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130
- Email: xtang@math.wustl.edu
- Received by editor(s): May 25, 2007
- Published electronically: December 9, 2009
- Additional Notes: The second author was supported in part by NSF Grant 0604552.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 2249-2277
- MSC (2010): Primary 16E40; Secondary 58B34
- DOI: https://doi.org/10.1090/S0002-9947-09-05079-X
- MathSciNet review: 2584600