Poisson suspensions and entropy for infinite transformations
HTML articles powered by AMS MathViewer
- by Élise Janvresse, Tom Meyerovitch, Emmanuel Roy and Thierry de la Rue
- Trans. Amer. Math. Soc. 362 (2010), 3069-3094
- DOI: https://doi.org/10.1090/S0002-9947-09-04968-X
- Published electronically: December 17, 2009
- PDF | Request permission
Abstract:
The Poisson entropy of an infinite-measure-preserving transformation is defined in the 2005 thesis of Roy as the Kolmogorov entropy of its Poisson suspension. In this article, we relate Poisson entropy with other definitions of entropy for infinite transformations: For quasi-finite transformations we prove that Poisson entropy coincides with Krengel’s and Parry’s entropy. In particular, this implies that for null-recurrent Markov chains, the usual formula for the entropy, $-\sum q_i p_{i,j}\log p_{i,j}$, holds for any definitions of entropy. Poisson entropy dominates Parry’s entropy in any conservative transformation. We also prove that relative entropy (in the sense of Danilenko and Rudolph) coincides with the relative Poisson entropy. Thus, for any factor of a conservative transformation, difference of the Krengel’s entropies equals difference of the Poisson entropies. In case there already exists a factor with zero Poisson entropy, we prove the existence of a maximum (Pinsker) factor with zero Poisson entropy. Together with the preceding results, this answers affirmatively the question raised by Aaronson and Park about existence of a Pinsker factor in the sense of Krengel for quasi-finite transformations.References
- Jon Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997. MR 1450400, DOI 10.1090/surv/050
- J. Aaronson and K. K. Park. Predictability, entropy and information of infinite transformations. arXiv/0705.2148.
- D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes, Springer Series in Statistics, Springer-Verlag, New York, 1988. MR 950166
- Alexandre I. Danilenko and Daniel J. Rudolph, Conditional entropy theory in infinite measure and a question of Krengel, Israel J. Math. 172 (2009), 93–117. MR 2534241, DOI 10.1007/s11856-009-0065-2
- Thierry de la Rue, Entropie d’un système dynamique gaussien: cas d’une action de $\textbf {Z}^d$, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 2, 191–194 (French, with English and French summaries). MR 1231420
- Nathaniel A. Friedman, Introduction to ergodic theory, Van Nostrand Reinhold Mathematical Studies, No. 29, Van Nostrand Reinhold Co., New York-Toronto-London, 1970. MR 0435350
- Sheldon Goldstein and Joel L. Lebowitz, Ergodic properties of an infinite system of particles moving independently in a periodic field, Comm. Math. Phys. 37 (1974), 1–18. MR 356802
- Guillermo Grabinsky, Poisson process over $\sigma$-finite Markov chains, Pacific J. Math. 111 (1984), no. 2, 301–315. MR 734857
- Steven Kalikow, A Poisson random walk is Bernoulli, Comm. Math. Phys. 81 (1981), no. 4, 495–499. MR 634444
- E. M. Klimko and Louis Sucheston, On convergence of information in spaces with infinite invariant measure, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 226–235. MR 239874, DOI 10.1007/BF00536276
- Ulrich Krengel, Entropy of conservative transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967), 161–181. MR 218522, DOI 10.1007/BF00532635
- William Parry, Ergodic and spectral analysis of certain infinite measure preserving transformations, Proc. Amer. Math. Soc. 16 (1965), 960–966. MR 181737, DOI 10.1090/S0002-9939-1965-0181737-8
- William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0262464
- William Parry, Topics in ergodic theory, Cambridge Tracts in Mathematics, vol. 75, Cambridge University Press, Cambridge, 2004. Reprint of the 1981 original. MR 2140546
- V. Rokhlin. Lectures on the entropy theory of measure-preserving transformations. Russ. Math. Surv., 22:1–52, 1967.
- E. Roy. Mesures de Poisson, infinie divisibilité et propriétés ergodiques. Ph.D. thesis, 2005.
- Emmanuel Roy, Ergodic properties of Poissonian ID processes, Ann. Probab. 35 (2007), no. 2, 551–576. MR 2308588, DOI 10.1214/009117906000000692
- Emmanuel Roy, Poisson suspensions and infinite ergodic theory, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 667–683. MR 2486789, DOI 10.1017/S0143385708080279
- Ja. G. Sinaĭ, Ergodic properties of a gas of one-dimensional hard globules with an infinite number of degrees of freedom, Funkcional. Anal. i Priložen. 6 (1972), no. 1, 41–50 (Russian). MR 0297288
- K. L. Volkovysskiĭ and Ja. G. Sinaĭ, Ergodic properties of an ideal gas with an infinite number of degrees of freedom, Funkcional. Anal. i Priložen. 5 (1971), no. 3, 19–21 (Russian). MR 0289094
- Roland Zweimüller, Poisson suspensions of compactly regenerative transformations, Colloq. Math. 110 (2008), no. 1, 211–225. MR 2353907, DOI 10.4064/cm110-1-10
Bibliographic Information
- Élise Janvresse
- Affiliation: Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, CNRS, Avenue de l’Université, F76801 Saint Étienne du Rouvray, France
- Email: Elise.Janvresse@univ-rouen.fr
- Tom Meyerovitch
- Affiliation: School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
- MR Author ID: 824249
- Email: tomm@post.tau.ac.il
- Emmanuel Roy
- Affiliation: Laboratoire Analyse, Géométrie et Applications, Université Paris 13 Institut Galilée, 99 avenue Jean-Baptiste Clément, F93430 Villetaneuse, France
- Email: roy@math.univ-paris13.fr
- Thierry de la Rue
- Affiliation: Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, CNRS, Avenue de l’Université, F76801 Saint Étienne du Rouvray, France
- Email: Thierry.de-la-Rue@univ-rouen.fr
- Received by editor(s): March 25, 2008
- Published electronically: December 17, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 3069-3094
- MSC (2000): Primary 37A05, 37A35, 37A40, 28D20
- DOI: https://doi.org/10.1090/S0002-9947-09-04968-X
- MathSciNet review: 2592946