Free actions of finite groups on $S^n \times S^n$
HTML articles powered by AMS MathViewer
- by Ian Hambleton and Özgün Ünlü PDF
- Trans. Amer. Math. Soc. 362 (2010), 3289-3317 Request permission
Abstract:
Let $p$ be an odd prime. We construct a non-abelian extension $\Gamma$ of $S^1$ by $\mathbf {Z}/p \times \mathbf {Z}/p$, and prove that any finite subgroup of $\Gamma$ acts freely and smoothly on $S^{2p-1} \times S^{2p-1}$. In particular, for each odd prime $p$ we obtain free smooth actions of infinitely many non-metacyclic rank two $p$-groups on $S^{2p-1} \times S^{2p-1}$. These results arise from a general approach to the existence problem for finite group actions on products of equidimensional spheres.References
- Alejandro Adem, Constructing and deconstructing group actions, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 1–8. MR 2066494, DOI 10.1090/conm/346/06283
- Alejandro Adem, James F. Davis, and Özgün Ünlü, Fixity and free group actions on products of spheres, Comment. Math. Helv. 79 (2004), no. 4, 758–778. MR 2099121, DOI 10.1007/s00014-004-0810-4
- Alejandro Adem and Jeff H. Smith, Periodic complexes and group actions, Ann. of Math. (2) 154 (2001), no. 2, 407–435. MR 1865976, DOI 10.2307/3062102
- Kahtan Alzubaidy, Free actions of $p$-groups $(p>3)$ on $S^{n}\times S^{n}$, Glasgow Math. J. 23 (1982), no. 2, 97–101. MR 663134, DOI 10.1017/S0017089500004857
- Kahtan Alzubaidy, Free actions on $(S^n)^k$, Mathematika 32 (1985), no. 1, 49–54. MR 817107, DOI 10.1112/S0025579300010858
- D. J. Benson and Jon F. Carlson, Projective resolutions and Poincaré duality complexes, Trans. Amer. Math. Soc. 342 (1994), no. 2, 447–488. MR 1142778, DOI 10.1090/S0002-9947-1994-1142778-X
- David J. Benson and Jon F. Carlson, Complexity and multiple complexes, Math. Z. 195 (1987), no. 2, 221–238. MR 892053, DOI 10.1007/BF01166459
- Norman Blackburn, Generalizations of certain elementary theorems on $p$-groups, Proc. London Math. Soc. (3) 11 (1961), 1–22. MR 122876, DOI 10.1112/plms/s3-11.1.1
- W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Tohoku Math. J. (2) 25 (1973), 69–87. MR 321077, DOI 10.2748/tmj/1178241416
- William Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157–186. MR 251736, DOI 10.2307/1970686
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339
- Henri Cartan, Sur les groupes d’Eilenberg-Mac Lane. II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 704–707 (French). MR 65161, DOI 10.1073/pnas.40.8.704
- —, Séminaire Henri Cartan de l’Ecole Normale Supérieure, 1954/1955. Algèbres d’Eilenberg-MacLane et homotopie, Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1955.
- P. E. Conner, On the action of a finite group on $S^{n}\times S^{n}$, Ann. of Math. (2) 66 (1957), 586–588. MR 96235, DOI 10.2307/1969910
- D. J. Glover, A study of certain modular representations, J. Algebra 51 (1978), no. 2, 425–475. MR 476841, DOI 10.1016/0021-8693(78)90116-3
- Ian Hambleton, Some examples of free actions on products of spheres, Topology 45 (2006), no. 4, 735–749. MR 2236376, DOI 10.1016/j.top.2006.02.002
- I. Hambleton and O. Ünlü, Examples of free actions on products of spheres, Quart. J. Math. 60 (2009), 461–474.
- Alex Heller, A note on spaces with operators, Illinois J. Math. 3 (1959), 98–100. MR 107866
- F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR 0341499
- Michael A. Jackson, $\textrm {Qd}(p)$-free rank two finite groups act freely on a homotopy product of two spheres, J. Pure Appl. Algebra 208 (2007), no. 3, 821–831. MR 2283428, DOI 10.1016/j.jpaa.2006.03.018
- Tsunekazu Kambe, The structure of $K_{\Lambda }$-rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966), 135–146. MR 198491, DOI 10.2969/jmsj/01820135
- Max Karoubi, $K$-theory, Grundlehren der Mathematischen Wissenschaften, Band 226, Springer-Verlag, Berlin-New York, 1978. An introduction. MR 0488029
- Matthias Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), no. 3, 707–754. MR 1709301, DOI 10.2307/121071
- I. J. Leary, The integral cohomology rings of some $p$-groups, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 1, 25–32. MR 1104598, DOI 10.1017/S0305004100070080
- I. J. Leary, The mod-$p$ cohomology rings of some $p$-groups, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 1, 63–75. MR 1162933, DOI 10.1017/S0305004100070766
- I. J. Leary, The cohomology of certain groups, Ph.D. thesis, University of Cambridge, 1991, (http://www.maths.abdn.ac.uk/ bensondj/html/archive/leary.html).
- Gene Lewis, Free actions on $S^{n}\times S^{n}$, Trans. Amer. Math. Soc. 132 (1968), 531–540. MR 229235, DOI 10.1090/S0002-9947-1968-0229235-4
- Gene Lewis, The integral cohomology rings of groups of order $p^{3}$, Trans. Amer. Math. Soc. 132 (1968), 501–529. MR 223430, DOI 10.1090/S0002-9947-1968-0223430-6
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- Robert Oliver, Free compact group actions on products of spheres, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 539–548. MR 561237
- Andrew Ranicki, The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. (3) 40 (1980), no. 1, 87–192. MR 560997, DOI 10.1112/plms/s3-40.1.87
- D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, 2004.
- Elliott Stein, Free actions on products of spheres, Michigan Math. J. 26 (1979), no. 2, 187–193. MR 532319
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- Peter Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann. 295 (1993), no. 4, 745–759. MR 1214960, DOI 10.1007/BF01444915
- Ch. B. Thomas, Free actions by $p$-groups on products of spheres and Yagita’s invariant $po(G)$, Transformation groups (Osaka, 1987) Lecture Notes in Math., vol. 1375, Springer, Berlin, 1989, pp. 326–338. MR 1006704, DOI 10.1007/BFb0085621
- Ö. Ünlü, Constructions of free group actions on products of spheres, Ph.D. Thesis, University of Wisconsin, 2004.
- C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), no. 1, 1–80. MR 432737, DOI 10.2307/1971019
- C. T. C. Wall, Surgery on compact manifolds, 2nd ed., Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by A. A. Ranicki. MR 1687388, DOI 10.1090/surv/069
- Nobuaki Yagita, On the dimension of spheres whose product admits a free action by a nonabelian group, Quart. J. Math. Oxford Ser. (2) 36 (1985), no. 141, 117–127. MR 780356, DOI 10.1093/qmath/36.1.117
Additional Information
- Ian Hambleton
- Affiliation: Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- MR Author ID: 80380
- Email: ian@math.mcmaster.ca
- Özgün Ünlü
- Affiliation: Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- Address at time of publication: Department of Mathematics, Bilkent University, Ankara, Turkey 06800
- Email: unluo@fen.bilkent.edu.tr
- Received by editor(s): April 10, 2008
- Received by editor(s) in revised form: March 4, 2009
- Published electronically: December 15, 2009
- Additional Notes: This research was partially supported by NSERC Discovery Grant A4000.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 3289-3317
- MSC (2010): Primary 57S17, 57R67
- DOI: https://doi.org/10.1090/S0002-9947-09-05039-9
- MathSciNet review: 2592957