Layer potential techniques in spectral analysis. Part I: Complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions
HTML articles powered by AMS MathViewer
- by Habib Ammari, Hyeonbae Kang, Mikyoung Lim and Habib Zribi
- Trans. Amer. Math. Soc. 362 (2010), 2901-2922
- DOI: https://doi.org/10.1090/S0002-9947-10-04695-7
- Published electronically: January 5, 2010
- PDF | Request permission
Abstract:
We provide a rigorous derivation of new complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions. The inclusions, somewhat apart from or nearly touching the boundary, are of arbitrary shape and arbitrary conductivity contrast vis-à-vis the background domain, with the limiting perfectly conducting inclusion. By integral equations, we reduce this problem to the study of the characteristic values of integral operators in the complex plane. Powerful techniques from the theory of meromorphic operator-valued functions and careful asymptotic analysis of integral kernels are combined for deriving complete asymptotic expansions for eigenvalues. Our asymptotic formulae in this paper may be expected to lead to efficient algorithms not only for solving shape optimization problems for Laplacian eigenvalues but also for determining specific internal features of an object based on scattering data measurements.References
- Jeffrey H. Albert, Generic properties of eigenfunctions of elliptic partial differential operators, Trans. Amer. Math. Soc. 238 (1978), 341–354. MR 471000, DOI 10.1090/S0002-9947-1978-0471000-3
- Habib Ammari, Mark Asch, and Hyeonbae Kang, Boundary voltage perturbations caused by small conductivity inhomogeneities nearly touching the boundary, Adv. in Appl. Math. 35 (2005), no. 4, 368–391. MR 2174737, DOI 10.1016/j.aam.2004.06.007
- Habib Ammari, Natacha Béreux, and Jean-Claude Nédélec, Resonances for Maxwell’s equations in a periodic structure, Japan J. Indust. Appl. Math. 17 (2000), no. 2, 149–198. MR 1769190, DOI 10.1007/BF03167342
- Habib Ammari and Hyeonbae Kang, Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics, vol. 1846, Springer-Verlag, Berlin, 2004. MR 2168949, DOI 10.1007/b98245
- Habib Ammari and Hyeonbae Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, J. Math. Anal. Appl. 296 (2004), no. 1, 190–208. MR 2070502, DOI 10.1016/j.jmaa.2004.04.003
- Habib Ammari and Hyeonbae Kang, Polarization and moment tensors, Applied Mathematical Sciences, vol. 162, Springer, New York, 2007. With applications to inverse problems and effective medium theory. MR 2327884
- H. Ammari, H. Kang, E. Kim, and H. Lee, Vibration testing for anomaly detection, Math. Meth. Appl. Sci., to appear.
- Habib Ammari, Hyeonbae Kang, and Hyundae Lee, Asymptotic expansions for eigenvalues of the Lamé system in the presence of small inclusions, Comm. Partial Differential Equations 32 (2007), no. 10-12, 1715–1736. MR 2372485, DOI 10.1080/03605300600910266
- H. Ammari, H. Kang, and H. Lee, Asymptotic analysis of high-contrast phononic crystals and a criterion for the band-gap opening, preprint.
- Habib Ammari, Hyeonbae Kang, Sofiane Soussi, and Habib Zribi, Layer potential techniques in spectral analysis. II. Sensitivity analysis of spectral properties of high contrast band-gap materials, Multiscale Model. Simul. 5 (2006), no. 2, 646–663. MR 2247766, DOI 10.1137/050646287
- Habib Ammari and Abdessatar Khelifi, Electromagnetic scattering by small dielectric inhomogeneities, J. Math. Pures Appl. (9) 82 (2003), no. 7, 749–842 (English, with English and French summaries). MR 2005296, DOI 10.1016/S0021-7824(03)00033-3
- H. Ammari and S. Moskow, Asymptotic expansions for eigenvalues in the presence of small inhomogeneities, Math. Methods Appl. Sci. 26 (2003), no. 1, 67–75. MR 1943110, DOI 10.1002/mma.343
- Habib Ammari and Faouzi Triki, Resonances for microstrip transmission lines, SIAM J. Appl. Math. 64 (2003/04), no. 2, 601–636. MR 2049666, DOI 10.1137/S0036139902418390
- Habib Ammari and Faouzi Triki, Splitting of resonant and scattering frequencies under shape deformation, J. Differential Equations 202 (2004), no. 2, 231–255. MR 2068440, DOI 10.1016/j.jde.2004.02.017
- Gérard Besson, Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou, Bull. Soc. Math. France 113 (1985), no. 2, 211–230 (French, with English summary). MR 820320
- Gilles Courtois, Spectrum of manifolds with holes, J. Funct. Anal. 134 (1995), no. 1, 194–221. MR 1359926, DOI 10.1006/jfan.1995.1142
- Daniel Daners, Dirichlet problems on varying domains, J. Differential Equations 188 (2003), no. 2, 591–624. MR 1955096, DOI 10.1016/S0022-0396(02)00105-5
- R. R. Gadyl′shin and A. M. Il′in, Asymptotics of the eigenvalues of the Dirichlet problem in a domain with a narrow crack, Mat. Sb. 189 (1998), no. 4, 25–48 (Russian, with Russian summary); English transl., Sb. Math. 189 (1998), no. 3-4, 503–526. MR 1632410, DOI 10.1070/SM1998v189n04ABEH000305
- I. C. Gohberg and E. I. Sigal, An operator generalization of the logarithmic residue theorem and Rouché’s theorem, Mat. Sb. (N.S.) 84(126) (1971), 607–629 (Russian). MR 0313856
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- V. G. Maz′ya, S. A. Nazarov, and B. A. Plamenevskiĭ, Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 2, 347–371 (Russian). MR 740795
- I. McGillivray, Capacitary asymptotic expansion of the groundstate to second order, Comm. Partial Differential Equations 23 (1998), no. 11-12, 2219–2252. MR 1662184, DOI 10.1080/03605309808821414
- André Noll, Domain perturbations, shift of eigenvalues and capacity, J. Funct. Anal. 170 (2000), no. 1, 246–263. MR 1736203, DOI 10.1006/jfan.1999.3496
- Stanley J. Osher and Fadil Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum, J. Comput. Phys. 171 (2001), no. 1, 272–288. MR 1843648, DOI 10.1006/jcph.2001.6789
- Shin Ozawa, Singular variation of domains and eigenvalues of the Laplacian, Duke Math. J. 48 (1981), no. 4, 767–778. MR 782576, DOI 10.1215/S0012-7094-81-04842-0
- Shin Ozawa, Electrostatic capacity and eigenvalues of the Laplacian, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 1, 53–62. MR 700595
- Shin Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a three-dimensional domain with a small hole, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 2, 243–257. MR 722496
- Shin Ozawa, Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 2, 259–277. MR 722497
- Shin Ozawa, Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains—the Neumann condition, Osaka J. Math. 22 (1985), no. 4, 639–655. MR 815438
- Shin Ozawa, Eigenvalues of the Laplacian under singular variation of domains—the Robin problem with obstacle of general shape, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 6, 124–125. MR 1404488
- Jeffrey Rauch and Michael Taylor, Potential and scattering theory on wildly perturbed domains, J. Functional Analysis 18 (1975), 27–59. MR 377303, DOI 10.1016/0022-1236(75)90028-2
- G. F. Roach, Green’s functions. Introductory theory with applications, Van Nostrand Reinhold Co., London-New York-Melbourne, 1970. MR 0277804
- J. Sanchez Hubert and E. Sánchez-Palencia, Vibration and coupling of continuous systems, Springer-Verlag, Berlin, 1989. Asymptotic methods. MR 996423, DOI 10.1007/978-3-642-73782-4
- Michael E. Taylor, Partial differential equations. II, Applied Mathematical Sciences, vol. 116, Springer-Verlag, New York, 1996. Qualitative studies of linear equations. MR 1395149, DOI 10.1007/978-1-4757-4187-2
- K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059–1078. MR 464332, DOI 10.2307/2374041
- Gregory Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572–611. MR 769382, DOI 10.1016/0022-1236(84)90066-1
- Michael J. Ward and Joseph B. Keller, Strong localized perturbations of eigenvalue problems, SIAM J. Appl. Math. 53 (1993), no. 3, 770–798. MR 1218383, DOI 10.1137/0153038
Bibliographic Information
- Habib Ammari
- Affiliation: Centre de Mathématiques Appliquées, CNRS UMR 7641, École Polytechnique, 91128 Palaiseau Cedex, France
- MR Author ID: 353050
- Email: ammari@cmapx.polytechnique.fr
- Hyeonbae Kang
- Affiliation: Department of Mathematical Sciences and RIM, Seoul National University, Seoul 151-747, Korea
- Address at time of publication: Department of Mathematics, Inha University, Incheon, 402-751, Korea
- MR Author ID: 268781
- Email: hkang@math.snu.ac.kr, hbkang@inha.ac.kr
- Mikyoung Lim
- Affiliation: Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
- Address at time of publication: Department of Mathematics, Korean Advanced Institute of Science and Technology, Daejeon 305-701, Korea
- MR Author ID: 689036
- Email: lim@math.colostate.edu, mklim@kaist.ac.kr
- Habib Zribi
- Affiliation: Centre de Mathématiques Appliquées, CNRS UMR 7641, École Polytechnique, 91128 Palaiseau Cedex, France
- Address at time of publication: Department of Mathematics, Korean Advanced Institute of Science and Technology, Daejeon 305-701, Korea
- Email: zribi@cmapx.polytechnique.fr
- Received by editor(s): January 27, 2006
- Received by editor(s) in revised form: December 9, 2007
- Published electronically: January 5, 2010
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 2901-2922
- MSC (2000): Primary 35B30
- DOI: https://doi.org/10.1090/S0002-9947-10-04695-7
- MathSciNet review: 2592941