Regular idempotents in $\beta S$
HTML articles powered by AMS MathViewer
- by Yevhen Zelenyuk
- Trans. Amer. Math. Soc. 362 (2010), 3183-3201
- DOI: https://doi.org/10.1090/S0002-9947-10-04926-3
- Published electronically: January 20, 2010
- PDF | Request permission
Abstract:
Let $S$ be a discrete semigroup and let $\beta S$ be the Stone-Čech compactification of $S$. We take the points of $\beta S$ to be the ultrafilters on $S$. Being a compact Hausdorff right topological semigroup, $\beta S$ has idempotents. Every idempotent $p\in \beta S$ determines a left invariant topology $\mathcal {T}_p$ on $S$ with a neighborhood base at $a\in S$ consisting of subsets $aB\cup \{a\}$, where $B\in p$. If $S$ is a group and $p$ is an idempotent in $S^*=\beta S\setminus S$, $(S,\mathcal {T}_p)$ is a homogeneous Hausdorff maximal space. An idempotent $p\in \beta S$ is regular if $p$ is uniform and the topology $\mathcal {T}_p$ is regular. We show that for every infinite cancellative semigroup $S$, there exists a regular idempotent in $\beta S$. As a consequence, we obtain that for every infinite cardinal $\kappa$, there exists a homogeneous regular maximal space of dispersion character $\kappa$. Another consequence says that there exists a translation invariant regular maximal topology on the real line of dispersion character $\mathfrak {c}$ stronger than the natural topology.References
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, Band 211, Springer-Verlag, New York-Heidelberg, 1974. MR 0396267
- E. van Douwen, Simultaneous extensions of continuous functions, Dissertation (1975), Vrije Universiteit.
- Eric K. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993), no. 2, 125–139. MR 1229708, DOI 10.1016/0166-8641(93)90145-4
- A. G. El′kin, Regular maximal spaces, Mat. Zametki 27 (1980), no. 2, 301–305, 320 (Russian). MR 568408
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- Stefano Ferri, Neil Hindman, and Dona Strauss, Digital representation of semigroups and groups, Semigroup Forum 77 (2008), no. 1, 36–63. MR 2413260, DOI 10.1007/s00233-008-9074-4
- Edwin Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309–333. MR 8692
- Neil Hindman and Dona Strauss, Algebra in the Stone-Čech compactification, De Gruyter Expositions in Mathematics, vol. 27, Walter de Gruyter & Co., Berlin, 1998. Theory and applications. MR 1642231, DOI 10.1515/9783110809220
- Neil Hindman, Igor Protasov, and Dona Strauss, Topologies on $S$ determined by idempotents in $\beta S$, Proceedings of the 13th Summer Conference on General Topology and its Applications (México City, 1998), 1998, pp. 155–190 (2000). MR 1803247
- Miroslav Katětov, On nearly discrete spaces, Časopis Pěst. Mat. Fys. 75 (1950), 69–78 (English, with Czech summary). MR 0036984
- V. I. Malyhin, Extremally disconnected and nearly extremally disconnected groups, Dokl. Akad. Nauk SSSR 220 (1975), 27–30 (Russian). MR 0382536
- V. I. Malyhin, Extremally disconnected topological groups, Uspekhi Mat. Nauk 34 (1979), no. 6(210), 59–66 (Russian). MR 562819
- Talin Papazyan, Extremal topologies on a semigroup, Topology Appl. 39 (1991), no. 3, 229–243. MR 1110567, DOI 10.1016/0166-8641(91)90116-4
- I. V. Protasov, Filters and topologies on semigroups, Mat. Stud. 3 (1994), 15–28, 120 (Russian, with English and Russian summaries). MR 1692845
- I. V. Protasov, Maximal topologies on groups, Sibirsk. Mat. Zh. 39 (1998), no. 6, 1368–1381, iii (Russian, with Russian summary); English transl., Siberian Math. J. 39 (1998), no. 6, 1184–1194. MR 1672661, DOI 10.1007/BF02674129
- Wolfgang Ruppert, Compact semitopological semigroups: an intrinsic theory, Lecture Notes in Mathematics, vol. 1079, Springer-Verlag, Berlin, 1984. MR 762985, DOI 10.1007/BFb0073675
- E. G. Zelenjuk, Finite groups in $\beta \textbf {N}$ are trivial, Semigroup Forum 55 (1997), no. 1, 131–132. MR 1446665, DOI 10.1007/PL00005907
- Yevhen Zelenyuk, On the ultrafilter semigroup of a topological group, Semigroup Forum 73 (2006), no. 2, 301–307. MR 2280826, DOI 10.1007/s00233-006-0607-4
- Yevhen Zelenyuk, Almost maximal spaces, Topology Appl. 154 (2007), no. 2, 339–357. MR 2278682, DOI 10.1016/j.topol.2006.05.001
- Yevhen Zelenyuk, Finite groups in Stone-Čech compactifications, Bull. Lond. Math. Soc. 40 (2008), no. 2, 337–346. MR 2414792, DOI 10.1112/blms/bdn015
- Yevhen Zelenyuk, Topologies on groups determined by discrete subsets, Topology Appl. 155 (2008), no. 12, 1332–1339. MR 2423971, DOI 10.1016/j.topol.2008.03.017
Bibliographic Information
- Yevhen Zelenyuk
- Affiliation: School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
- Email: yevhen.zelenyuk@wits.ac.za
- Received by editor(s): June 23, 2008
- Published electronically: January 20, 2010
- Additional Notes: This work was supported by NRF grant FA2007041200005 and The John Knopfmacher Centre for Applicable Analysis and Number Theory.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 3183-3201
- MSC (2000): Primary 22A05, 54G05; Secondary 22A30, 54H11
- DOI: https://doi.org/10.1090/S0002-9947-10-04926-3
- MathSciNet review: 2592952