Weak type estimates for spherical multipliers on noncompact symmetric spaces
HTML articles powered by AMS MathViewer
- by Stefano Meda and Maria Vallarino
- Trans. Amer. Math. Soc. 362 (2010), 2993-3026
- DOI: https://doi.org/10.1090/S0002-9947-10-05082-8
- Published electronically: January 4, 2010
- PDF | Request permission
Abstract:
In this paper we prove sharp weak type $1$ estimates for spherical Fourier multipliers on symmetric spaces of the noncompact type. This complements earlier results of J.-Ph. Anker and A.D. Ionescu.References
- Jean-Philippe Anker, $\textbf {L}_p$ Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. (2) 132 (1990), no. 3, 597–628. MR 1078270, DOI 10.2307/1971430
- Jean-Philippe Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), no. 2, 257–297. MR 1150587, DOI 10.1215/S0012-7094-92-06511-2
- J.-P. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces, Geom. Funct. Anal. 9 (1999), no. 6, 1035–1091. MR 1736928, DOI 10.1007/s000390050107
- Jean-Philippe Anker and Noël Lohoué, Multiplicateurs sur certains espaces symétriques, Amer. J. Math. 108 (1986), no. 6, 1303–1353 (French). MR 868894, DOI 10.2307/2374528
- A. Carbonaro, G. Mauceri and S. Meda, $H^1$ and $BMO$ for certain nondoubling metric measure spaces, to appear in Ann. Sc. Norm. Sup. Pisa, arXiv:0808.0146 [math.FA].
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- J. L. Clerc and E. M. Stein, $L^{p}$-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911–3912. MR 367561, DOI 10.1073/pnas.71.10.3911
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Michael Cowling, Saverio Giulini, and Stefano Meda, $L^p$-$L^q$-estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. II, J. Lie Theory 5 (1995), no. 1, 1–14. MR 1362006
- R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. (2) 93 (1971), 150–165. MR 289724, DOI 10.2307/1970758
- Ramesh Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 101, Springer-Verlag, Berlin, 1988. MR 954385, DOI 10.1007/978-3-642-72956-0
- Yves Guivarc’h, Lizhen Ji, and J. C. Taylor, Compactifications of symmetric spaces, Progress in Mathematics, vol. 156, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1633171
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Sigurdur Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 1994. MR 1280714, DOI 10.1090/surv/039
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Alexandru D. Ionescu, Fourier integral operators on noncompact symmetric spaces of real rank one, J. Funct. Anal. 174 (2000), no. 2, 274–300. MR 1767376, DOI 10.1006/jfan.2000.3572
- Alexandru D. Ionescu, Singular integrals on symmetric spaces of real rank one, Duke Math. J. 114 (2002), no. 1, 101–122. MR 1915037, DOI 10.1215/S0012-7094-02-11415-X
- Alexandru D. Ionescu, Singular integrals on symmetric spaces. II, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3359–3378. MR 1974692, DOI 10.1090/S0002-9947-03-03312-9
- Robert J. Stanton and Peter A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), no. 3-4, 251–276. MR 511124, DOI 10.1007/BF02392309
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Jan-Olov Strömberg, Weak type $L^{1}$ estimates for maximal functions on noncompact symmetric spaces, Ann. of Math. (2) 114 (1981), no. 1, 115–126. MR 625348, DOI 10.2307/1971380
- Michael E. Taylor, $L^p$-estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), no. 3, 773–793. MR 1016445, DOI 10.1215/S0012-7094-89-05836-5
- P. C. Trombi and V. S. Varadarajan, Spherical transforms of semisimple Lie groups, Ann. of Math. (2) 94 (1971), 246–303. MR 289725, DOI 10.2307/1970861
Bibliographic Information
- Stefano Meda
- Affiliation: Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
- Email: stefano.meda@unimib.it
- Maria Vallarino
- Affiliation: Laboratoire de Mathématiques et Applications, Physique Mathématiques d’Orléans, Université d’Orléans, UFR Sciences, Bâtiment de Mathématique-Route de Chartres, B.P. 6759, 45067 Orléans cedex 2, France
- Address at time of publication: Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
- Email: maria.vallarino@unimib.it
- Received by editor(s): February 14, 2008
- Published electronically: January 4, 2010
- Additional Notes: This work was partially supported by the Italian Progetto PRIN “Analisi Armonica” 2007–2008.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 2993-3026
- MSC (2000): Primary 42B15, 53C35, 32A55
- DOI: https://doi.org/10.1090/S0002-9947-10-05082-8
- MathSciNet review: 2592944