Exponential sums: Questions by Denef, Sperber, and Igusa
HTML articles powered by AMS MathViewer
- by Raf Cluckers
- Trans. Amer. Math. Soc. 362 (2010), 3745-3756
- DOI: https://doi.org/10.1090/S0002-9947-09-05084-3
- Published electronically: December 3, 2009
- PDF | Request permission
Abstract:
We prove the remaining part of the conjecture by Denef and Sperber [Denef, J. and Sperber, S., Exponential sums mod $p^n$ and Newton polyhedra, Bull. Belg. Math. Soc., suppl. (2001) 55-63] on nondegenerate local exponential sums modulo $p^m$. We generalize Igusa’s conjecture in the introduction of [Igusa, J., Lectures on forms of higher degree, Lect. Math. Phys., Springer-Verlag, 59 (1978)] from the homogeneous to the quasi-homogeneous case and prove the nondegenerate case as well as the modulo $p$ case. We generalize some results by Katz in [Katz, N. M., Estimates for “singular” exponential sums, Internat. Math. Res. Notices (1999) no. 16, 875-899] on finite field exponential sums to the quasi-homogeneous case.References
- Raf Cluckers, Igusa and Denef-Sperber conjectures on nondegenerate $p$-adic exponential sums, Duke Math. J. 141 (2008), no. 1, 205–216. MR 2372152, DOI 10.1215/S0012-7094-08-14116-X
- Raf Cluckers, Igusa’s conjecture on exponential sums modulo $p$ and $p^2$ and the motivic oscillation index, Int. Math. Res. Not. IMRN 4 (2008), Art. ID rnm118, 20. MR 2424173
- J. Denef and S. Sperber, Exponential sums mod $p^n$ and Newton polyhedra, Bull. Belg. Math. Soc. Simon Stevin suppl. (2001), 55–63. A tribute to Maurice Boffa. MR 1900398
- Jun-ichi Igusa, Forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 59, Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi, 1978. MR 546292
- Nicholas M. Katz, Estimates for “singular” exponential sums, Internat. Math. Res. Notices 16 (1999), 875–899. MR 1715519, DOI 10.1155/S1073792899000458
- Dirk Segers, Lower bound for the poles of Igusa’s $p$-adic zeta functions, Math. Ann. 336 (2006), no. 3, 659–669. MR 2249763, DOI 10.1007/s00208-006-0016-8
Bibliographic Information
- Raf Cluckers
- Affiliation: Departement wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
- Address at time of publication: Laboratoire Painlevé, Université Lille 1, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex France
- Email: raf.cluckers@wis.kuleuven.be
- Received by editor(s): September 4, 2008
- Published electronically: December 3, 2009
- Additional Notes: The author was a postdoctoral fellow of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 3745-3756
- MSC (2010): Primary 11L07, 11S40; Secondary 11L05
- DOI: https://doi.org/10.1090/S0002-9947-09-05084-3
- MathSciNet review: 2601607