A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up
HTML articles powered by AMS MathViewer
- by Nejla Nouaili and Hatem Zaag
- Trans. Amer. Math. Soc. 362 (2010), 3391-3434
- DOI: https://doi.org/10.1090/S0002-9947-10-04902-0
- Published electronically: February 17, 2010
- PDF | Request permission
Abstract:
We prove a Liouville theorem for a vector valued semilinear heat equation with no gradient structure. Classical tools such as the maximum principle or energy techniques break down and have to be replaced by a new approach. We then derive from this theorem uniform estimates for blow-up solutions of that equation.References
- D. Andreucci, M. A. Herrero, and J. J. L. Velázquez, Liouville theorems and blow up behaviour in semilinear reaction diffusion systems, Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), no. 1, 1–53. MR 1437188, DOI 10.1016/S0294-1449(97)80148-5
- J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 473–486. MR 473484, DOI 10.1093/qmath/28.4.473
- Stathis Filippas and Robert V. Kohn, Refined asymptotics for the blowup of $u_t-\Delta u=u^p$, Comm. Pure Appl. Math. 45 (1992), no. 7, 821–869. MR 1164066, DOI 10.1002/cpa.3160450703
- Stathis Filippas and Frank Merle, Modulation theory for the blowup of vector-valued nonlinear heat equations, J. Differential Equations 116 (1995), no. 1, 119–148. MR 1317705, DOI 10.1006/jdeq.1995.1031
- Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966). MR 214914
- Matthew Grayson and Richard S. Hamilton, The formation of singularities in the harmonic map heat flow, Comm. Anal. Geom. 4 (1996), no. 4, 525–546. MR 1428088, DOI 10.4310/CAG.1996.v4.n4.a1
- Yoshikazu Giga and Robert V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), no. 3, 297–319. MR 784476, DOI 10.1002/cpa.3160380304
- Yoshikazu Giga, Shin’ya Matsui, and Satoshi Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J. 53 (2004), no. 2, 483–514. MR 2060042, DOI 10.1512/iumj.2004.53.2401
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406
- B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883–901. MR 619749, DOI 10.1080/03605308108820196
- Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
- M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 10 (1993), no. 2, 131–189 (English, with English and French summaries). MR 1220032, DOI 10.1016/S0294-1449(16)30217-7
- Howard A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_{t}=-Au+{\scr F}(u)$, Arch. Rational Mech. Anal. 51 (1973), 371–386. MR 348216, DOI 10.1007/BF00263041
- C. David Levermore and Marcel Oliver, The complex Ginzburg-Landau equation as a model problem, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994) Lectures in Appl. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1996, pp. 141–190. MR 1363028, DOI 10.1080/03605309708821254
- Yvan Martel and Frank Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. (9) 79 (2000), no. 4, 339–425. MR 1753061, DOI 10.1016/S0021-7824(00)00159-8
- Frank Merle and Pierre Raphael, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), no. 3, 565–672. MR 2061329, DOI 10.1007/s00222-003-0346-z
- Frank Merle and Pierre Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161 (2005), no. 1, 157–222. MR 2150386, DOI 10.4007/annals.2005.161.157
- Frank Merle and Hatem Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 (1998), no. 2, 139–196. MR 1488298, DOI 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
- F. Merle and H. Zaag, Refined uniform estimates at blow-up and applications for nonlinear heat equations, Geom. Funct. Anal. 8 (1998), no. 6, 1043–1085. MR 1664791, DOI 10.1007/s000390050123
- Frank Merle and Hatem Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann. 316 (2000), no. 1, 103–137. MR 1735081, DOI 10.1007/s002080050006
- Nader Masmoudi and Hatem Zaag, Blow-up profile for the complex Ginzburg-Landau equation, J. Funct. Anal. 255 (2008), no. 7, 1613–1666. MR 2442077, DOI 10.1016/j.jfa.2008.03.008
- Frank Merle and Hatem Zaag, Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation, Comm. Math. Phys. 282 (2008), no. 1, 55–86. MR 2415473, DOI 10.1007/s00220-008-0532-3
- N. Nouaili. A simplified proof of a Liouville theorem for nonnegative solution of a subcritical semilinear heat equations. J. Dynam. Differential Equations, 2008. to appear.
- Stefan Popp, Olaf Stiller, Evgenii Kuznetsov, and Lorenz Kramer, The cubic complex Ginzburg-Landau equation for a backward bifurcation, Phys. D 114 (1998), no. 1-2, 81–107. MR 1612047, DOI 10.1016/S0167-2789(97)00170-X
- Petr Plecháč and Vladimír Šverák, On self-similar singular solutions of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math. 54 (2001), no. 10, 1215–1242. MR 1843986, DOI 10.1002/cpa.3006
- J. J. L. Velázquez, Higher-dimensional blow up for semilinear parabolic equations, Comm. Partial Differential Equations 17 (1992), no. 9-10, 1567–1596. MR 1187622, DOI 10.1080/03605309208820896
- J. J. L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc. 338 (1993), no. 1, 441–464. MR 1134760, DOI 10.1090/S0002-9947-1993-1134760-2
- Fred B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations 55 (1984), no. 2, 204–224. MR 764124, DOI 10.1016/0022-0396(84)90081-0
- Hatem Zaag, Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), no. 5, 581–622. MR 1643389, DOI 10.1016/S0294-1449(98)80002-4
- Hatem Zaag, A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure, Comm. Pure Appl. Math. 54 (2001), no. 1, 107–133. MR 1787109, DOI 10.1002/1097-0312(200101)54:1<107::AID-CPA5>3.3.CO;2-L
Bibliographic Information
- Nejla Nouaili
- Affiliation: Département de Mathématiques et Applications, École Normale Supérieure, 45 rue d’Ulm 75230, Paris Cedex 05, France
- Address at time of publication: Université Paris 13, Institut Galilée, Laboratoire Analyse, Géométrie et Applications, CNRS-UMR 7539, 99 avenue J.B. Clément, 93430 Villetaneuse, France
- MR Author ID: 849951
- Email: nouaili@math.univ-paris13.fr
- Hatem Zaag
- Affiliation: Université Paris 13, Institut Galilée, Laboratoire Analyse, Géométrie et Applications, CNRS-UMR 7539, 99 avenue J.B. Clément, 93430 Villetaneuse, France
- Email: zaag@math.univ-paris13.fr
- Received by editor(s): October 24, 2007
- Published electronically: February 17, 2010
- Additional Notes: The authors would like to thank the referee for his valuable suggestions which (we hope) made our paper much clearer and reader friendly.
The second author was supported by a grant from the French Agence Nationale de la Recherche, project ONDENONLIN, reference ANR-06-BLAN-0185. - © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 3391-3434
- MSC (2000): Primary 35B05, 35K05, 35K55, 74H35
- DOI: https://doi.org/10.1090/S0002-9947-10-04902-0
- MathSciNet review: 2601595