Some model theory of Polish structures
HTML articles powered by AMS MathViewer
- by Krzysztof Krupiński
- Trans. Amer. Math. Soc. 362 (2010), 3499-3533
- DOI: https://doi.org/10.1090/S0002-9947-10-04988-3
- Published electronically: February 15, 2010
- PDF | Request permission
Abstract:
We introduce a notion of Polish structure and, in doing so, provide a setting which allows the application of ideas and techniques from model theory, descriptive set theory, topology and the theory of profinite groups. We define a topological notion of independence in Polish structures and prove that it has some nice properties. Using this notion, we prove counterparts of some basic results from geometric stability theory in the context of small Polish structures. Then, we prove some structural theorems about compact groups regarded as Polish structures: each small, $nm$-stable compact $G$-group is solvable-by-finite; each small compact $G$-group of finite ${\mathcal NM}$-rank is nilpotent-by-finite. Examples of small Polish structures and groups are also given.References
- General topology. III, Encyclopaedia of Mathematical Sciences, vol. 51, Springer-Verlag, Berlin, 1995. Paracompactness, function spaces, descriptive theory; A translation of Current problems in mathematics. Fundamental directions. Vol. 51 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [ MR1036523 (91e:54001)]; Translation by G. G. Gould; Translation edited by A. V. Arhangel′skii [A. V. Arkhangel′skiĭ]. MR 1416131, DOI 10.1007/978-3-662-07413-8
- Howard Becker and Alexander S. Kechris, The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996. MR 1425877, DOI 10.1017/CBO9780511735264
- R. Engelking, Topologia Ogólna, PWN, Warszawa, 1989.
- Clifton Ealy, Krzysztof Krupiński, and Anand Pillay, Superrosy dependent groups having finitely satisfiable generics, Ann. Pure Appl. Logic 151 (2008), no. 1, 1–21. MR 2381504, DOI 10.1016/j.apal.2007.09.004
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Greg Hjorth, A universal Polish $G$-space, Topology Appl. 91 (1999), no. 2, 141–150. MR 1664504, DOI 10.1016/S0166-8641(97)00207-1
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Otto H. Kegel and Bertram A. F. Wehrfritz, Locally finite groups, North-Holland Mathematical Library, Vol. 3, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0470081
- Judy Kennedy and James T. Rogers Jr., Orbits of the pseudocircle, Trans. Amer. Math. Soc. 296 (1986), no. 1, 327–340. MR 837815, DOI 10.1090/S0002-9947-1986-0837815-9
- Krzysztof Krupiński, Products of finite abelian groups as profinite groups, J. Algebra 288 (2005), no. 2, 556–582. MR 2146145, DOI 10.1016/j.jalgebra.2005.01.011
- Krzysztof Krupiński, Abelian profinite groups, Fund. Math. 185 (2005), no. 1, 41–59. MR 2161751, DOI 10.4064/fm185-1-3
- Krzysztof Krupiński, Profinite structures interpretable in fields, Ann. Pure Appl. Logic 142 (2006), no. 1-3, 19–54. MR 2250536, DOI 10.1016/j.apal.2005.10.007
- —, Generalizations of small profinite structures, Submitted.
- —, Fields interpretable in rosy theories, Israel J. Math., to appear.
- Krzysztof Krupiński and Frank Wagner, Small profinite groups and rings, J. Algebra 306 (2006), no. 2, 494–506. MR 2271348, DOI 10.1016/j.jalgebra.2006.01.027
- G. R. Lehner, Extending homeomorphisms on the pseudo-arc, Trans. Amer. Math. Soc. 98 (1961), 369–394. MR 120608, DOI 10.1090/S0002-9947-1961-0120608-0
- M. G. Megrelishvili, Free topological $G$-groups, New Zealand J. Math. 25 (1996), no. 1, 59–72. MR 1398366
- J. van Mill, Infinite-dimensional topology, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction. MR 977744
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- Ludomir Newelski, $\scr M$-gap conjecture and m-normal theories, Israel J. Math. 106 (1998), 285–311. MR 1656901, DOI 10.1007/BF02773473
- Ludomir Newelski, Small profinite groups, J. Symbolic Logic 66 (2001), no. 2, 859–872. MR 1833483, DOI 10.2307/2695049
- Ludomir Newelski, Small profinite structures, Trans. Amer. Math. Soc. 354 (2002), no. 3, 925–943. MR 1867365, DOI 10.1090/S0002-9947-01-02854-9
- Anand Pillay, Geometric stability theory, Oxford Logic Guides, vol. 32, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1429864
- Bruno Poizat, Stable groups, Mathematical Surveys and Monographs, vol. 87, American Mathematical Society, Providence, RI, 2001. Translated from the 1987 French original by Moses Gabriel Klein. MR 1827833, DOI 10.1090/surv/087
- Luis Ribes and Pavel Zalesskii, Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 40, Springer-Verlag, Berlin, 2000. MR 1775104, DOI 10.1007/978-3-662-04097-3
- Frank O. Wagner, Simple theories, Mathematics and its Applications, vol. 503, Kluwer Academic Publishers, Dordrecht, 2000. MR 1747713, DOI 10.1007/978-94-017-3002-0
- Frank O. Wagner, Small profinite $m$-stable-groups, Fund. Math. 176 (2003), no. 2, 181–191. MR 1971308, DOI 10.4064/fm176-2-6
- John S. Wilson, On the structure of compact torsion groups, Monatsh. Math. 96 (1983), no. 1, 57–66. MR 721596, DOI 10.1007/BF01298934
Bibliographic Information
- Krzysztof Krupiński
- Affiliation: Instytut Matematyczny Uniwersytetu Wrocławskiego, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland – and – Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801
- Email: kkrup@math.uni.wroc.pl
- Received by editor(s): February 11, 2008
- Published electronically: February 15, 2010
- Additional Notes: This research was supported by the Polish Government grant N201 032 32/2231 and by NSF grant DMS 0300639
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 3499-3533
- MSC (2010): Primary 03C45, 03E15; Secondary 54H11, 20E18, 54F15
- DOI: https://doi.org/10.1090/S0002-9947-10-04988-3
- MathSciNet review: 2601598