A Mordell inequality for lattices over maximal orders
HTML articles powered by AMS MathViewer
- by Stephanie Vance
- Trans. Amer. Math. Soc. 362 (2010), 3827-3839
- DOI: https://doi.org/10.1090/S0002-9947-10-04989-5
- Published electronically: February 24, 2010
- PDF | Request permission
Abstract:
In this paper we prove an analogue of Mordell’s inequality for lattices in finite-dimensional complex or quaternionic Hermitian space that are modules over a maximal order in an imaginary quadratic number field or a totally definite rational quaternion algebra. This inequality implies that the $16$-dimensional Barnes-Wall lattice has optimal density among all $16$-dimensional lattices with Hurwitz structures.References
- Maurice Auslander and Oscar Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1–24. MR 117252, DOI 10.1090/S0002-9947-1960-0117252-7
- Henry Cohn and Noam Elkies, New upper bounds on sphere packings. I, Ann. of Math. (2) 157 (2003), no. 2, 689–714. MR 1973059, DOI 10.4007/annals.2003.157.689
- H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, 2003, to appear in Ann. of Math., arXiv:math.MG/0403263.
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- J. H. Conway and N. J. A. Sloane, Complex and integral laminated lattices, Trans. Amer. Math. Soc. 280 (1983), no. 2, 463–490. MR 716832, DOI 10.1090/S0002-9947-1983-0716832-0
- J. H. Conway and N. J. A. Sloane, The Coxeter-Todd lattice, the Mitchell group, and related sphere packings, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 3, 421–440. MR 698347, DOI 10.1017/S0305004100060746
- Benedict H. Gross, Group representations and lattices, J. Amer. Math. Soc. 3 (1990), no. 4, 929–960. MR 1071117, DOI 10.1090/S0894-0347-1990-1071117-8
- Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294, DOI 10.1007/978-1-4612-0525-8
- Jacques Martinet, Perfect lattices in Euclidean spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 327, Springer-Verlag, Berlin, 2003. MR 1957723, DOI 10.1007/978-3-662-05167-2
- G. Nebe and N.J.A. Sloane, A Catalogue of Lattices, published online at http://www.research.att.com/~njas/lattices.
- H.-G. Quebbemann, An application of Siegel’s formula over quaternion orders, Mathematika 31 (1984), no. 1, 12–16. MR 762171, DOI 10.1112/S0025579300010597
- A. Schürmann, Enumerating perfect forms, to appear in the Proceedings of the Second International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms, Chile 2007, published in the AMS Contemporary Mathematics series.
- F. Sigrist, Quaternionic-perfect forms in dimension $12$, preprint, 2000.
Bibliographic Information
- Stephanie Vance
- Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195
- Address at time of publication: Department of Chemistry, Computer Science, and Mathematics, Adams State College, 208 Edgemont Boulevard, Alamosa, Colorado 81102
- Email: slvance@math.washington.edu, slvance@adams.edu
- Received by editor(s): October 14, 2008
- Published electronically: February 24, 2010
- Additional Notes: The author was supported by an ARCS Foundation fellowship and a research assistantship funded by Microsoft Research
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 3827-3839
- MSC (2000): Primary 11H06, 11H31
- DOI: https://doi.org/10.1090/S0002-9947-10-04989-5
- MathSciNet review: 2601611