A note on the Verlinde bundles on elliptic curves
HTML articles powered by AMS MathViewer
- by Dragos Oprea
- Trans. Amer. Math. Soc. 362 (2010), 3779-3798
- DOI: https://doi.org/10.1090/S0002-9947-10-05040-3
- Published electronically: February 17, 2010
- PDF | Request permission
Abstract:
We study the splitting properties of the Verlinde bundles over elliptic curves. Our methods rely on the explicit description of the moduli space of semistable vector bundles on elliptic curves, and on the analysis of the symmetric powers of the Schrödinger representation of the Theta group.References
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 131423, DOI 10.1112/plms/s3-7.1.414
- Arnaud Beauville, The Coble hypersurfaces, C. R. Math. Acad. Sci. Paris 337 (2003), no. 3, 189–194 (English, with English and French summaries). MR 2001133, DOI 10.1016/S1631-073X(03)00302-9
- Prakash Belkale, The strange duality conjecture for generic curves, J. Amer. Math. Soc. 21 (2008), no. 1, 235–258. MR 2350055, DOI 10.1090/S0894-0347-07-00569-3
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487, DOI 10.1007/978-3-662-02788-2
- F. Catanese and C. Ciliberto, Symmetric products of elliptic curves and surfaces of general type with $p_g=q=1$, J. Algebraic Geom. 2 (1993), no. 3, 389–411. MR 1211993
- J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313, DOI 10.1007/BF01850655
- Ron Donagi and Loring W. Tu, Theta functions for $\textrm {SL}(n)$ versus $\textrm {GL}(n)$, Math. Res. Lett. 1 (1994), no. 3, 345–357. MR 1302649, DOI 10.4310/MRL.1994.v1.n3.a6
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Georg Hein and David Ploog, Fourier-Mukai transforms and stable bundles on elliptic curves, Beiträge Algebra Geom. 46 (2005), no. 2, 423–434. MR 2196927
- Alina Marian and Dragos Oprea, The level-rank duality for non-abelian theta functions, Invent. Math. 168 (2007), no. 2, 225–247. MR 2289865, DOI 10.1007/s00222-006-0032-z
- Shigeru Mukai, Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. MR 607081
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- D. Oprea, The Verlinde bundles and the semihomogeneous Wirtinger duality, submitted, arXiv:0831.4962.
- Alexander Polishchuk, Abelian varieties, theta functions and the Fourier transform, Cambridge Tracts in Mathematics, vol. 153, Cambridge University Press, Cambridge, 2003. MR 1987784, DOI 10.1017/CBO9780511546532
- Mihnea Popa, Verlinde bundles and generalized theta linear series, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1869–1898. MR 1881021, DOI 10.1090/S0002-9947-01-02923-3
- Loring W. Tu, Semistable bundles over an elliptic curve, Adv. Math. 98 (1993), no. 1, 1–26. MR 1212625, DOI 10.1006/aima.1993.1011
- Jörg Schulte, Harmonic analysis on finite Heisenberg groups, European J. Combin. 25 (2004), no. 3, 327–338. MR 2036470, DOI 10.1016/j.ejc.2003.10.003
Bibliographic Information
- Dragos Oprea
- Affiliation: Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
- MR Author ID: 734182
- Email: doprea@math.ucsd.edu
- Received by editor(s): September 11, 2008
- Published electronically: February 17, 2010
- Additional Notes: This work was supported by NSF grant DMS-0701114
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 3779-3798
- MSC (2000): Primary 14H60; Secondary 14H40
- DOI: https://doi.org/10.1090/S0002-9947-10-05040-3
- MathSciNet review: 2601609