Characterization and semiadditivity of the $\mathcal C^1$-harmonic capacity
HTML articles powered by AMS MathViewer
- by Aleix Ruiz de Villa and Xavier Tolsa
- Trans. Amer. Math. Soc. 362 (2010), 3641-3675
- DOI: https://doi.org/10.1090/S0002-9947-10-05105-6
- Published electronically: February 17, 2010
- PDF | Request permission
Abstract:
The $\mathcal C^1$-harmonic capacity $\kappa ^c$ plays a central role in problems of approximation by harmonic functions in the $\mathcal {C}^1$-norm in $\mathbb {R}^{n+1}$. In this paper we prove the comparability between the capacity $\kappa ^c$ and its positive version $\kappa ^c_+$. As a corollary, we deduce the semiadditivity of $\kappa ^c$. This capacity can be considered as a generalization in $\mathbb {R}^{n+1}$ of the continuous analytic capacity $\alpha$ in $\mathbb {C}$. Moreover, we also show that the so-called inner boundary conjecture fails for dimensions $n>1$, unlike in the case $n=1$.References
- Pertti Mattila, On the analytic capacity and curvature of some Cantor sets with non-$\sigma$-finite length, Publ. Mat. 40 (1996), no. 1, 195–204. MR 1397014, DOI 10.5565/PUBLMAT_{4}0196_{1}2
- P. Mattila and P. V. Paramonov, On geometric properties of harmonic $\textrm {Lip}_1$-capacity, Pacific J. Math. 171 (1995), no. 2, 469–491. MR 1372240
- Joan Mateu and Xavier Tolsa, Riesz transforms and harmonic $\textrm {Lip}_1$-capacity in Cantor sets, Proc. London Math. Soc. (3) 89 (2004), no. 3, 676–696. MR 2107011, DOI 10.1112/S0024611504014790
- Dzh. Verdera, M. S. Mel′nikov, and P. V. Paramonov, $C^1$-approximation and the extension of subharmonic functions, Mat. Sb. 192 (2001), no. 4, 37–58 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 3-4, 515–535. MR 1834090, DOI 10.1070/sm2001v192n04ABEH000556
- F. Nazarov, S. Treil, and A. Volberg, The $Tb$-theorem on non-homogeneous spaces, Acta Math. 190 (2003), no. 2, 151–239. MR 1998349, DOI 10.1007/BF02392690
- F. Nazarov, S. Treil, A. Volberg, The $Tb$-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin, preprint n. 519, Centre de Recerca Matemàtica, Barcelona 2002.
- P. V. Paramonov, Harmonic approximations in the $C^1$-norm, Mat. Sb. 181 (1990), no. 10, 1341–1365 (Russian); English transl., Math. USSR-Sb. 71 (1992), no. 1, 183–207. MR 1085885, DOI 10.1070/SM1992v071n01ABEH002129
- Xavier Tolsa, Littlewood-Paley theory and the $T(1)$ theorem with non-doubling measures, Adv. Math. 164 (2001), no. 1, 57–116. MR 1870513, DOI 10.1006/aima.2001.2011
- Xavier Tolsa, The semiadditivity of continuous analytic capacity and the inner boundary conjecture, Amer. J. Math. 126 (2004), no. 3, 523–567. MR 2058383
- Xavier Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003), no. 1, 105–149. MR 1982794, DOI 10.1007/BF02393237
- Xavier Tolsa, A proof of the weak $(1,1)$ inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition, Publ. Mat. 45 (2001), no. 1, 163–174. MR 1829582, DOI 10.5565/PUBLMAT_{4}5101_{0}7
- Alexander Volberg, Calderón-Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conference Series in Mathematics, vol. 100, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003. MR 2019058, DOI 10.1090/cbms/100
Bibliographic Information
- Aleix Ruiz de Villa
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra (Barcelona), Catalonia
- Email: aleixrv@mat.uab.cat
- Xavier Tolsa
- Affiliation: Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Catalonia
- MR Author ID: 639506
- ORCID: 0000-0001-7976-5433
- Email: xtolsa@mat.uab.cat
- Received by editor(s): May 14, 2008
- Published electronically: February 17, 2010
- Additional Notes: The first author was supported by grant AP-2004-5141. Also, both authors were partially supported by grant MTM2007-62817 (Spain).
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 3641-3675
- MSC (2000): Primary 31A15, 31C05
- DOI: https://doi.org/10.1090/S0002-9947-10-05105-6
- MathSciNet review: 2601603