The cluster category of a canonical algebra
HTML articles powered by AMS MathViewer
- by M. Barot, D. Kussin and H. Lenzing
- Trans. Amer. Math. Soc. 362 (2010), 4313-4330
- DOI: https://doi.org/10.1090/S0002-9947-10-04998-6
- Published electronically: March 5, 2010
- PDF | Request permission
Abstract:
We study the cluster category of a canonical algebra $A$ in terms of the hereditary category of coherent sheaves over the corresponding weighted projective line $\mathbb {X}$. As an application we determine the automorphism group of the cluster category and show that the cluster-tilting objects form a cluster structure in the sense of Buan, Iyama, Reiten and Scott. The tilting graph of the sheaf category always coincides with the tilting or exchange graph of the cluster category. We show that this graph is connected if the Euler characteristic of $\mathbb {X}$ is non-negative, or equivalently, if $A$ is of tame (domestic or tubular) representation type.References
- Maurice Auslander, María Inés Platzeck, and Idun Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1–46. MR 530043, DOI 10.1090/S0002-9947-1979-0530043-2
- M. Barot, D. Kussin, and H. Lenzing, The Grothendieck group of a cluster category, J. Pure Appl. Algebra 212 (2008), no. 1, 33–46. MR 2355032, DOI 10.1016/j.jpaa.2007.04.007
- A. B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), no. 4, 1035–1079. MR 2521253, DOI 10.1112/S0010437X09003960
- Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618. MR 2249625, DOI 10.1016/j.aim.2005.06.003
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265–297. MR 915180, DOI 10.1007/BFb0078849
- Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343. MR 1140607, DOI 10.1016/0021-8693(91)90107-J
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- Dieter Happel and Luise Unger, On the set of tilting objects in hereditary categories, Representations of algebras and related topics, Fields Inst. Commun., vol. 45, Amer. Math. Soc., Providence, RI, 2005, pp. 141–159. MR 2146246
- T. Hübner, Exzeptionelle Vektorbündel und Reflektionen an Kippgarben über projektiven gewichteten Kurven. Dissertation, Universität Paderborn, 1996.
- Thomas Hübner, Rank additivity for quasi-tilted algebras of canonical type, Colloq. Math. 75 (1998), no. 2, 183–193. MR 1490688, DOI 10.4064/cm-75-2-183-193
- Osamu Iyama and Yuji Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168. MR 2385669, DOI 10.1007/s00222-007-0096-4
- Bernhard Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581. MR 2184464
- Dirk Kussin, Noncommutative curves of genus zero: related to finite dimensional algebras, Mem. Amer. Math. Soc. 201 (2009), no. 942, x+128. MR 2548114, DOI 10.1090/memo/0942
- Dirk Kussin, Parameter curves for the regular representations of tame bimodules, J. Algebra 320 (2008), no. 6, 2567–2582. MR 2437515, DOI 10.1016/j.jalgebra.2008.05.022
- Helmut Lenzing, Representations of finite-dimensional algebras and singularity theory, Trends in ring theory (Miskolc, 1996) CMS Conf. Proc., vol. 22, Amer. Math. Soc., Providence, RI, 1998, pp. 71–97. MR 1491919, DOI 10.1109/22.660982
- Helmut Lenzing and Hagen Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra [ MR1206953 (94d:16019)], Representations of algebras (Ottawa, ON, 1992) CMS Conf. Proc., vol. 14, Amer. Math. Soc., Providence, RI, 1993, pp. 313–337. MR 1265294
- Helmut Lenzing and Hagen Meltzer, Tilting sheaves and concealed-canonical algebras, Representation theory of algebras (Cocoyoc, 1994) CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 1996, pp. 455–473. MR 1388067
- Helmut Lenzing and Hagen Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), no. 4, 1685–1700. MR 1747349, DOI 10.1080/00927870008826922
- Helmut Lenzing and José Antonio de la Peña, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc. (3) 78 (1999), no. 3, 513–540. MR 1674837, DOI 10.1112/S0024611599001872
- Helmut Lenzing and Idun Reiten, Additive functions for quivers with relations, Colloq. Math. 82 (1999), no. 1, 85–103. MR 1736037, DOI 10.4064/cm-82-1-85-103
- Hagen Meltzer, Exceptional vector bundles, tilting sheaves and tilting complexes for weighted projective lines, Mem. Amer. Math. Soc. 171 (2004), no. 808, viii+139. MR 2074151, DOI 10.1090/memo/0808
- Jeremy Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), no. 1, 37–48. MR 1099084, DOI 10.1112/jlms/s2-43.1.37
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Claus Michael Ringel, The canonical algebras, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 407–432. With an appendix by William Crawley-Boevey. MR 1171247
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- Bin Zhu, Equivalences between cluster categories, J. Algebra 304 (2006), no. 2, 832–850. MR 2264281, DOI 10.1016/j.jalgebra.2006.03.012
Bibliographic Information
- M. Barot
- Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Mexico
- Email: barot@matem.unam.mx
- D. Kussin
- Affiliation: Institut für Mathematik, Universität Paderborn, 33095 Paderborn, Germany
- Address at time of publication: Fakultät für Mathematik, Universität Bielefeld, P. O. Box 100131, 33501 Bielefeld, Germany
- Email: dirk@math.uni-paderborn.de, dkussin@math.uni-bielefeld.de
- H. Lenzing
- Affiliation: Institut für Mathematik, Universität Paderborn, 33095 Paderborn, Germany
- MR Author ID: 112610
- Email: helmut@math.uni-paderborn.de
- Received by editor(s): August 12, 2008
- Published electronically: March 5, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 4313-4330
- MSC (2000): Primary 16G20, 18E30
- DOI: https://doi.org/10.1090/S0002-9947-10-04998-6
- MathSciNet review: 2608408