Countable groups of isometries on Banach spaces
HTML articles powered by AMS MathViewer
- by Valentin Ferenczi and Elói Medina Galego
- Trans. Amer. Math. Soc. 362 (2010), 4385-4431
- DOI: https://doi.org/10.1090/S0002-9947-10-05034-8
- Published electronically: March 12, 2010
- PDF | Request permission
Abstract:
A group $G$ is representable in a Banach space $X$ if $G$ is isomorphic to the group of isometries on $X$ in some equivalent norm. We prove that a countable group $G$ is representable in a separable real Banach space $X$ in several general cases, including when $G \simeq \{-1,1\} \times H$, $H$ finite and $\dim X \geq |H|$, or when $G$ contains a normal subgroup with two elements and $X$ is of the form $c_0(Y)$ or $\ell _p(Y)$, $1 \leq p <+\infty$. This is a consequence of a result inspired by methods of S. Bellenot (1986) and stating that under rather general conditions on a separable real Banach space $X$ and a countable bounded group $G$ of isomorphisms on $X$ containing $-Id$, there exists an equivalent norm on $X$ for which $G$ is equal to the group of isometries on $X$.
We also extend methods of K. Jarosz (1988) to prove that any complex Banach space of dimension at least $2$ may be renormed with an equivalent complex norm to admit only trivial real isometries, and that any complexification of a Banach space may be renormed with an equivalent complex norm to admit only trivial and conjugation real isometries. It follows that every real Banach space of dimension at least $4$ and with a complex structure may be renormed to admit exactly two complex structures up to isometry, and that every real Cartesian square may be renormed to admit a unique complex structure up to isometry.
References
- Razvan Anisca, Subspaces of $L_p$ with more than one complex structure, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2819–2829. MR 1974339, DOI 10.1090/S0002-9939-03-06858-8
- Steven F. Bellenot, Banach spaces with trivial isometries, Israel J. Math. 56 (1986), no. 1, 89–96. MR 879916, DOI 10.1007/BF02776242
- J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc. 96 (1986), no. 2, 221–226. MR 818448, DOI 10.1090/S0002-9939-1986-0818448-2
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- Jean Dieudonné, Complex structures on real Banach spaces, Proc. Amer. Math. Soc. 3 (1952), 162–164. MR 47252, DOI 10.1090/S0002-9939-1952-0047252-8
- Valentin Ferenczi, Uniqueness of complex structure and real hereditarily indecomposable Banach spaces, Adv. Math. 213 (2007), no. 1, 462–488. MR 2331251, DOI 10.1016/j.aim.2007.01.003
- Valentin Ferenczi and Elói Medina Galego, Even infinite-dimensional real Banach spaces, J. Funct. Anal. 253 (2007), no. 2, 534–549. MR 2370088, DOI 10.1016/j.jfa.2007.08.006
- Manuel González and José M. Herrera, Decompositions for real Banach spaces with small spaces of operators, Studia Math. 183 (2007), no. 1, 1–14. MR 2360254, DOI 10.4064/sm183-1-1
- Y. Gordon and R. Loewy, Uniqueness of $(\Delta )$ bases and isometries of Banach spaces, Math. Ann. 241 (1979), no. 2, 159–180. MR 534809, DOI 10.1007/BF01351917
- W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
- K. Jarosz, Any Banach space has an equivalent norm with trivial isometries, Israel J. Math. 64 (1988), no. 1, 49–56. MR 981748, DOI 10.1007/BF02767369
- N. J. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull. 38 (1995), no. 2, 218–222. MR 1335101, DOI 10.4153/CMB-1995-031-4
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Gilles Lancien, Dentability indices and locally uniformly convex renormings, Rocky Mountain J. Math. 23 (1993), no. 2, 635–647. MR 1226193, DOI 10.1216/rmjm/1181072581
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- A. N. Pličko, Construction of bounded fundamental and total biorthogonal systems from unbounded systems, Dokl. Akad. Nauk Ukrain. SSR Ser. A 5 (1980), 19–23, 93 (Russian, with English summary). MR 579359
- F. Räbiger and W. J. Ricker, $C_0$-groups and $C_0$-semigroups of linear operators on hereditarily indecomposable Banach spaces, Arch. Math. (Basel) 66 (1996), no. 1, 60–70. MR 1363778, DOI 10.1007/BF01323983
- Haskell P. Rosenthal, The Banach spaces $C(K)$, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1547–1602. MR 1999603, DOI 10.1016/S1874-5849(03)80043-8
- Jacques Stern, Le groupe des isométries d’un espace de Banach, Studia Math. 64 (1979), no. 2, 139–149 (French, with English summary). MR 537117, DOI 10.4064/sm-64-2-139-149
Bibliographic Information
- Valentin Ferenczi
- Affiliation: Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, rua do Matão, 1010 - Cidade Universitária, 05508-090 São Paulo, SP, Brazil
- MR Author ID: 360353
- ORCID: 0000-0001-5239-111X
- Email: ferenczi@ime.usp.br
- Elói Medina Galego
- Affiliation: Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, rua do Matão, 1010 - Cidade Universitária, 05508-090 São Paulo, SP, Brazil
- MR Author ID: 647154
- Email: eloi@ime.usp.br
- Received by editor(s): June 13, 2007
- Received by editor(s) in revised form: March 2, 2009
- Published electronically: March 12, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 4385-4431
- MSC (2000): Primary 46B03, 46B04
- DOI: https://doi.org/10.1090/S0002-9947-10-05034-8
- MathSciNet review: 2608411