On some questions related to the maximal operator on variable $L^p$ spaces
HTML articles powered by AMS MathViewer
- by Andrei K. Lerner
- Trans. Amer. Math. Soc. 362 (2010), 4229-4242
- DOI: https://doi.org/10.1090/S0002-9947-10-05066-X
- Published electronically: March 26, 2010
- PDF | Request permission
Abstract:
Let $\mathcal {P}(\mathbb {R}^n)$ be the class of all exponents $p$ for which the Hardy-Littlewood maximal operator $M$ is bounded on $L^{p(\cdot )}({\mathbb R}^n)$. A recent result by T. Kopaliani provides a characterization of $\mathcal {P}$ in terms of the Muckenhoupt-type condition $A$ under some restrictions on the behavior of $p$ at infinity. We give a different proof of a slightly extended version of this result. Then we characterize a weak type $\big (p(\cdot ),p(\cdot )\big )$ property of $M$ in terms of $A$ for radially decreasing $p$. Finally, we construct an example showing that $p\in \mathcal {P}(\mathbb {R}^n)$ does not imply $p(\cdot )-\alpha \in \mathcal {P}(\mathbb {R}^n)$ for all $\alpha < p_–1$. Similarly, $p\in \mathcal {P}(\mathbb {R}^n)$ does not imply $\alpha p(\cdot )\in \mathcal {P}(\mathbb {R}^n)$ for all $\alpha >1/p_-$.References
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- D. Cruz-Uribe, L. Diening and A. Fiorenza, A new proof of the boundedness of maximal operators on variable Lebesgue spaces, submitted.
- D. Cruz-Uribe and A. Fiorenza, $L\log L$ results for the maximal operator in variable $L^p$ spaces, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2631–2647. MR 2471932, DOI 10.1090/S0002-9947-08-04608-4
- D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238. MR 1976842
- L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot )}$, Math. Inequal. Appl. 7 (2004), no. 2, 245–253. MR 2057643, DOI 10.7153/mia-07-27
- Lars Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657–700 (English, with English and French summaries). MR 2166733, DOI 10.1016/j.bulsci.2003.10.003
- L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta and T. Shimomura, Maximal functions in variable exponent spaces: Limiting cases of the exponent, preprint.
- L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, FSDONA 2004 Proceedings, pages 38-52, Academy of Sciences of the Czech Republic, Prague, 2005.
- Björn Jawerth, Weighted inequalities for maximal operators: linearization, localization and factorization, Amer. J. Math. 108 (1986), no. 2, 361–414. MR 833361, DOI 10.2307/2374677
- Ekaterine Kapanadze and Tengiz Kopaliani, A note on maximal operator on $L^{p(t)}(\Omega )$ spaces, Georgian Math. J. 15 (2008), no. 2, 307–316. MR 2428473, DOI 10.1515/GMJ.2008.307
- Tengizi S. Kopaliani, Infimal convolution and Muckenhoupt $A_{p(\cdot )}$ condition in variable $L^p$ spaces, Arch. Math. (Basel) 89 (2007), no. 2, 185–192. MR 2341730, DOI 10.1007/s00013-007-2035-4
- Ondrej Kováčik and Jiří Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. MR 1134951
- Andrei K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable $L^p$ spaces, Math. Z. 251 (2005), no. 3, 509–521. MR 2190341, DOI 10.1007/s00209-005-0818-5
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Eiichi Nakai and Kôzô Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), no. 2, 207–218. MR 780660, DOI 10.2969/jmsj/03720207
- Aleš Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\Bbb R)$, Math. Inequal. Appl. 7 (2004), no. 2, 255–265. MR 2057644, DOI 10.7153/mia-07-28
- Aleš Nekvinda, A note on maximal operator on $l^{\{p_n\}}$ and $L^{p(x)}(\Bbb R)$, J. Funct. Spaces Appl. 5 (2007), no. 1, 49–88. MR 2296013, DOI 10.1155/2007/294367
- Aleš Nekvinda, Maximal operator on variable Lebesgue spaces for almost monotone radial exponent, J. Math. Anal. Appl. 337 (2008), no. 2, 1345–1365. MR 2386383, DOI 10.1016/j.jmaa.2007.04.047
- Luboš Pick and Michael Růžička, An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded, Expo. Math. 19 (2001), no. 4, 369–371. MR 1876258, DOI 10.1016/S0723-0869(01)80023-2
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- Andrei K. Lerner
- Affiliation: Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
- MR Author ID: 615118
- Email: aklerner@netvision.net.il
- Received by editor(s): June 8, 2008
- Published electronically: March 26, 2010
- Additional Notes: This work was supported by the Spanish Ministry of Education under the program “Programa Ramón y Cajal, 2006”.
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 4229-4242
- MSC (2000): Primary 42B25, 46E30
- DOI: https://doi.org/10.1090/S0002-9947-10-05066-X
- MathSciNet review: 2608404