Representation and index theory for Toeplitz operators
HTML articles powered by AMS MathViewer
- by G. J. Murphy
- Trans. Amer. Math. Soc. 362 (2010), 3911-3946
- DOI: https://doi.org/10.1090/S0002-9947-10-05170-6
- Published electronically: March 1, 2010
- PDF | Request permission
Abstract:
We study Toeplitz operators on the Hardy spaces of connected compact abelian groups and of tube-type bounded symmetric domains. A representation theorem for these operators and for classes of abstract Toeplitz elements in C*-algebras is proved. This is used to give a unified treatment to index theory in this setting, and a variety of new index theorems are proved that generalize the Gohberg–Krein theorem for Toeplitz operators on the Hardy space of the unit circle in the plane.References
- A.B. Badi, Index theory for generalized Toeplitz operators, Ph.D. thesis, National University of Ireland, Cork (2005).
- C. A. Berger, L. A. Coburn, and A. Lebow, Representation and index theory for $C^*$-algebras generated by commuting isometries, J. Functional Analysis 27 (1978), no. 1, 51–99. MR 0467392, DOI 10.1016/0022-1236(78)90019-8
- C. A. Berger and L. A. Coburn, Wiener-Hopf operators on $U_{2}$, Integral Equations Operator Theory 2 (1979), no. 2, 139–173. MR 543881, DOI 10.1007/BF01682732
- H. Bohr, Über die Argumentvariation einer fastperiodischen Funktion, Danske vidensk Selskab. 10 (1930), 10.
- Manfred Breuer, Fredholm theories in von Neumann algebras. I, Math. Ann. 178 (1968), 243–254. MR 234294, DOI 10.1007/BF01350663
- Manfred Breuer, Fredholm theories in von Neumann algebras. II, Math. Ann. 180 (1969), 313–325. MR 264407, DOI 10.1007/BF01351884
- L. A. Coburn, R. G. Douglas, D. G. Schaeffer, and I. M. Singer, $C^{\ast }$-algebras of operators on a half-space. II. Index theory, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 69–79. MR 358418, DOI 10.1007/BF02684694
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952, DOI 10.1007/978-1-4684-9330-6
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- G. J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (1987), no. 2, 303–326. MR 915512
- Gerard J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990. MR 1074574
- G. J. Murphy, Spectral and index theory for Toeplitz operators, Proc. Roy. Irish Acad. Sect. A 91 (1991), no. 1, 1–6. MR 1173153
- Gerard J. Murphy, Almost-invertible Toeplitz operators and $K$-theory, Integral Equations Operator Theory 15 (1992), no. 1, 72–81. MR 1134688, DOI 10.1007/BF01193767
- Gerard J. Murphy, Toeplitz operators on generalised $H^2$ spaces, Integral Equations Operator Theory 15 (1992), no. 5, 825–852. MR 1177325, DOI 10.1007/BF01200703
- Gerard J. Murphy, An index theorem for Toeplitz operators, J. Operator Theory 29 (1993), no. 1, 97–114. MR 1277967
- Gerard J. Murphy, Fredholm index theory and the trace, Proc. Roy. Irish Acad. Sect. A 94 (1994), no. 2, 161–166. MR 1369029
- Gerard J. Murphy, $C^\ast$-algebras generated by commuting isometries, Rocky Mountain J. Math. 26 (1996), no. 1, 237–267. MR 1386163, DOI 10.1216/rmjm/1181072114
- Gerard J. Murphy, Toeplitz operators associated to unimodular algebras, Integral Equations Operator Theory 46 (2003), no. 3, 363–375. MR 1991785, DOI 10.1007/s00020-001-1144-x
- G. J. Murphy, Topological and analytical indices in $C^*$-algebras, J. Funct. Anal. 234 (2006), no. 2, 261–276. MR 2216901, DOI 10.1016/j.jfa.2005.08.012
- John Phillips and Iain Raeburn, An index theorem for Toeplitz operators with noncommutative symbol space, J. Funct. Anal. 120 (1994), no. 2, 239–263. MR 1266310, DOI 10.1006/jfan.1994.1032
- S. C. Power, Commutator ideals and pseudodifferential $C^{\ast }$-algebras, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 124, 467–489. MR 596980, DOI 10.1093/qmath/31.4.467
- Walter Rudin, Fourier analysis on groups, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. Reprint of the 1962 original; A Wiley-Interscience Publication. MR 1038803, DOI 10.1002/9781118165621
- Harald Upmeier, Toeplitz $C^{\ast }$-algebras on bounded symmetric domains, Ann. of Math. (2) 119 (1984), no. 3, 549–576. MR 744863, DOI 10.2307/2007085
- Harald Upmeier, Fredholm indices for Toeplitz operators on bounded symmetric domains, Amer. J. Math. 110 (1988), no. 5, 811–832. MR 961496, DOI 10.2307/2374694
- Harald Upmeier, Toeplitz operators and index theory in several complex variables, Operator Theory: Advances and Applications, vol. 81, Birkhäuser Verlag, Basel, 1996. MR 1384981, DOI 10.1016/s0168-9274(96)90019-7
- E. Van Kampen, On almost periodic functions of constant absolute value, J. London Math. Soc. 12 (1937), 3–6.
Bibliographic Information
- G. J. Murphy
- Affiliation: Department of Mathematics, National University of Ireland, Western Road, Cork, Ireland
- Received by editor(s): January 23, 2006
- Published electronically: March 1, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 3911-3946
- MSC (2000): Primary 47B35, 46L05, 46L08, 43A17
- DOI: https://doi.org/10.1090/S0002-9947-10-05170-6
- MathSciNet review: 2608391