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ISOPERIMETRIC INEQUALITIES FOR CONVEX HULLS

AND RELATED QUESTIONS

PAOLO TILLI

Abstract. We consider the problem of maximizing the Lebesgue measure
of the convex hull of a connected compact set of prescribed one-dimensional
Hausdorff measure. In dimension two, we prove that the only solutions are
semicircles. In higher dimensions, we prove some isoperimetric inequalities
for convex hulls of connected sets; we focus on a classical open problem and
discuss a possible new approach.

1. Introduction

In this paper we consider the problem, implicitly suggested in [3], of maximiz-
ing the volume of the convex hull of a connected compact set of given length in
Euclidean space. Throughout the paper, the term “length” will always denote one-
dimensional Hausdorff measureH1, whereas the term “volume” stands for Lebesgue
measure Ld, where the dimension d is that of the ambient space R

d.
Thus, letting hull(K) denote the convex hull of a set K ⊂ R

d, our problem in
its more general formulation can be stated as follows:

Problem 1.1. Given a real number L > 0, find among all compact connected sets
K ⊂ R

d such that H1(K) ≤ L those for which Ld(hull(K)) is a maximum.

Observe that the constraint that H1(K) ≤ L is equivalent to requiring equality,
since if H1(K) < L, then a larger convex hull can be obtained by scaling. Hence,
by homogeneity, our problem is equivalent to maximizing the isoperimetric ratio

(1)
Ld(hull(K))

H1(K)d

among all connected compact sets such that 0 < H1(K) < ∞.
When d = 1 the problem is trivial, hence we assume that d > 1. The existence

of solutions was proved by Gori [6] in any dimension, using the compactness and
semicontinuity results of Blaschke and Go�lab. However, finding the optimal sets
seems to be a difficult problem.

In the particular case where K is a closed curve, this problem was raised by
Bonnesen and Fenchel [2] and, in dimension d > 2, a complete solution is still
missing. The problem is completely solved only in the case of curves that are convex
in the sense of Schoenberg (i.e. curves in R

d which do not cross any hyperplane
more than d times; see [13]). For closed convex curves the problem was solved in
[13], whereas for convex curves (not necessarily closed) it was solved by Nudel’man
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(see [7, 12]). It is not known, however, whether optimal convex curves are also
optimal among all curves (this is a conjecture of Zalgaller; see [16]).

For curves in R
3, either open or closed, solutions have been found only under

extra symmetry assumptions (see [4, 8, 9]).
The planar case d = 2 is easier. For closed curves, the problem is easily reduced

to the standard isoperimetric inequality, whereas for open curves it is well known
that the only solutions are semicircles (see e.g. [10]). It is also known how to locate
in the plane a certain number of segments of prescribed lengths, in such a way that
their union is a connected set and the area of their convex hull is a maximum (this
problem was solved by A. Siegel; see [14, 15]).

In this paper we consider the more general case whereK is an arbitrary connected
compact set (and not necessarily a union of segments, as was originally suggested
in [3], p. 38) and we provide a full solution in the planar case.

Theorem 1.1. Assume K ⊂ R
2 is a compact connected set, let A denote the

Lebesgue measure of its convex hull, and let L = H1(K) denote its length which we
assume to be finite. Then

(2) A ≤ L2

2π
,

and equality holds if and only if K is a semicircle.

Problem 1.1 remains open in dimension d > 2. However, we can prove the
following bound for the volume of the convex hull.

Theorem 1.2. Assume K ⊂ R
d is a compact connected set such that H1(K) is

finite, and let ν : K → Sd−1 be a measurable selection of the unit tangent vector.
Then

(3) Ld(hull(K)) ≤ 1

(d!)2

∫
K

· · ·
∫
K

|ν(x1) ∧ · · · ∧ ν(xd)| dH1(x1) · · · dH1(xd).

As a consequence of the trivial bound |ν(x1) ∧ · · · ∧ ν(xd)| ≤ 1, one easily obtains
the following corollary.

Corollary 1.3. Assume K ⊂ R
d is a compact connected set. Then

(4) Ld(hull(K)) ≤ H1(K)d

(d!)2
.

We point out that this inequality cannot be optimal in any dimension: in par-
ticular, in dimension two it should be replaced by (2) which is optimal.

Moreover, when K is the image of a Lipschitz curve, the integrals in (3) can be
parameterized, and one obtains the following corollary.

Corollary 1.4. Let γ : [a, b] → R
d be a Lipschitz curve. Then

V ≤ 1

(d!)2

∫ b

a

· · ·
∫ b

a

|γ′(t1) ∧ · · · ∧ γ′(td)| dt1 · · · dtd,

where V denotes the volume of the convex hull of γ.

In order to prove Theorem 1.1, in Section 3 we associate with every connected
compact set K ⊂ R

d of finite length a Borel measure μ on the unit sphere Sd−1.
This measure μ satisfies μ(Sd−1) = H1(K) and provides information on how the
tangent space to K is distributed on the unit sphere, up to orientation. For this
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reason, we call μ the direction measure associated to K. In principle, our approach
to Problem 1.1 using the direction measure is valid in any dimension, and a complete
solution of Problem 1.1 might be related to the following variational problem for
measures.

Problem 1.2. In dimension d ≥ 3, compute

(5) θ(d) := max
μ

∫
Sd−1

· · ·
∫
Sd−1

|x1 ∧ · · · ∧ xd| dμ(x1) · · · dμ(xd),

where the maximum is over all probability measures μ on the unit sphere Sd−1,
and find all measures for which the maximum is attained.

Note that, as the integrand function is even in each variable, one can restrict (5)
to the case where the measure μ is even. The quantity (5) can be used to bound
the isoperimetric ratio, as follows.

Theorem 1.5. For every d ≥ 2 and every connected compact set K ⊂ R
d with

0 < H1(K) < ∞,

(6)
Ld(hull(K))

H1(K)d
≤ θ(d)

(d!)2

holds, where θ(d) is given by (5).

We believe that this bound might be sharp in any dimension. Indeed, when d = 2,
we can solve (5) explicitly (Theorem 4.1), with the resulting bound attained by the
semicircle, and this allows us to prove (2) (uniqueness of the semicircle, however,
is more delicate and requires additional work). Unfortunately, when d > 2 we were
not able to compute (5).

When d = 3, it was proved by Nudel’man [7, 12] that among all convex curves,
the isoperimetric ratio (1) is maximized by the helical curve

(7) x(t) = cos t, y(t) = sin t, z(t) = t/
√
2, 0 ≤ t ≤ 2π

(which is the unique maximizer, up to similarity), and it has been conjectured
[16] that this curve maximizes (1) among all curves, not necessarily convex. This
motivates the following question.

Problem 1.3. Prove or disprove the following statement: when d = 3, the maxi-
mum in (5) is achieved by the probability measure μ0 on the sphere S2, given by
Hausdorff measure H1 restricted to the two parallels{

(x, y, z) ∈ S2 such that |z| = 1√
3

}
,

normalized to have total mass one.

We point out that the probability measure μ0 described above is obtained as the
direction measure (see Section 3) relative to Nudel’man’s helix (7) (normalized to
have unitary length). An explicit computation reveals that∫

S2

∫
S2

∫
S2

|x ∧ y ∧ z| dμ0(x) dμ0(y) dμ0(z) =
2√
3π

,

and this quantity divided by (d!)2 = 36 is exactly the isoperimetric ratio of the
helical curve (7). Therefore, if the answer to Problem 1.3 were affirmative, it would

follow that θ(3) = 2/(
√
3π) and hence, by (6), the helical curve (7) would be optimal
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among all connected compact sets, thus proving, in particular, the aforementioned
conjecture of Zalgaller.

Note added in proof. The answer to Problem 1.3 turns out to be negative (for
instance, the uniform measure on the sphere is a better competitor than the measure
μ0 described above, which therefore does not yield the maximum in (5)). However,
Problem 1.2 is still open, and an explicit solution would turn (6) into an effective
bound, stronger than the bound in (4).

The paper is organized as follows. In Section 2 we prove Theorem 1.2, whereas
in Section 3 we introduce the notion of direction measure and prove Theorem 1.5.
Finally, Section 4 is devoted to the proof of Theorem 1.1.

2. A bound for the volume of the convex hull

This section is devoted to the proof of Theorem 1.2. Our starting point is the
following result of Gori, the proof of which can be found in [6].

Theorem 2.1 (Gori). Assume K ⊂ R
d is a connected compact set which can be

written as the union of n segments (n ≥ d) with endpoints xi, yi, i = 1, . . . , n.
Then, letting vi = yi − xi, we have

(8) Ld(hull(K)) ≤ 1

d!

∑
1≤j1<j2<···<jd≤n

|vj1 ∧ · · · ∧ vjd | .

In order to prove Theorem 1.2, we also need as a tool the following structure
theorem for connected compact sets of finite length. The proof of this lemma can
be found in [1] (see Theorem 4.4.8 therein and its proof).

Lemma 2.2. Assume that K ⊂ R
d is a compact connected set such that H1(K) <

∞. Then there exists a countable family of Lipschitz curves γi : [0, Li] → K, Li ≥ 0,
such that:

(1) Each γi is injective and parameterized by arc length.
(2) Letting Ki = γi([0, Li]), we have

H1(K \
∞⋃
i=1

Ki) = 0.

(3) For every j ≥ 2,

Kj ∩
j−1⋃
i=1

Ki = {γj(0)}.

(4) The compact sets
⋃n

i=1 Ki converge to K with respect to the Hausdorff
distance, as n → ∞.

It is well known that a compact connected set K such that H1(K) < ∞ is
rectifiable (indeed, this follows as a byproduct of the previous lemma, which can be
seen as a strong rectifiability theorem). Thus K has a tangent space (in the sense
of geometric measure theory; see for instance [5]) at H1-a.e. point x ∈ K, and one
can find a measurable map ν : K → Sd−1 such that for a.e. x ∈ K, the tangent
space at x is parallel to ν(x) (the construction of such maps can be achieved as
a consequence of Lemma 2.2). Every such map ν is called a measurable selection
of the tangent space (note that a tangent vector, where it exists, is unique up to
orientation, hence the need for a measurable selection).

Now we are in a position to prove Theorem 1.2.
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Proof of Theorem 1.2. Clearly we may assume that K does not reduce to a single
point. The actual proof is divided into several steps.

Step 1. First, we assume that K is the union of n segments, with endpoints
xi �= yi, i = 1, . . . , n. Decreasing if necessary the number of segments (i.e. dropping
redundant segments and merging into a single segment any two collinear segments
that are not disjoint), we may assume that any two segments have at most one
point in common. In this case, the tangent vector is defined (up to orientation)
at all points x ∈ K, except any that happen to be an endpoint of a segment or a
possible intersection point of two or more segments. Thus, a measurable selection
of the tangent vector ν(x) is given by

ν(x) =
yi − xi

|yi − xi|
if x belongs to the segment from xi to yi (we may regard ν(x) as undefined if x
belongs to more than one segment).

If n < d, then clearly hull(K) has zero measure. However, in this case the
integral in (3) is zero as well, since for every choice of points x1, . . . , xd where ν is
defined, at least two of them (say x1 and x2) belong to the same segment; hence
ν(x1) = ν(x2), and thus the wedge product under the integral sign vanishes almost
everywhere. Hence (3) is trivial when n < d.

Now suppose that n ≥ d. In this case, we claim that (3) reduces to (8). Let
si ⊂ K denote the segment with endpoints xi, yi, set vi = yi−vi and let νi = vi/|vi|
be the tangent vector along the segment si. Recall that any two segments have at
most one point in common, thus overlapping is H1-negligible. Hence we can split
each nested integral into a sum of integrals over each single segment, obtaining∫

K

· · ·
∫
K

|ν(x1) ∧ · · · ∧ ν(xd)| dH1(x1) · · · dH1(xd)

=

n∑
j1=1

· · ·
n∑

jd=1

∫
sj1

· · ·
∫
sjd

|ν(x1) ∧ · · · ∧ ν(xd)| dH1(x1) · · · dH1(xd)

=

n∑
j1=1

· · ·
n∑

jd=1

∫
sj1

· · ·
∫
sjd

|νj1 ∧ · · · ∧ νjd | dH1(x1) · · · dH1(xd)

=
n∑

j1=1

· · ·
n∑

jd=1

H1(sj1)× · · · × H1(sjd)× |νj1 ∧ · · · ∧ νjd |

=
n∑

j1=1

· · ·
n∑

jd=1

|vj1 ∧ · · · ∧ vjd | ,

where for the last equality we have used the fact that H1(sj)νj = vj . Then,
using the invariance of the summand function with respect to permutations and
neglecting all d-tuples where any two subscripts are equal (for which the wedge
product vanishes), we finally obtain∫

K

· · ·
∫
K

|ν(x1) ∧ · · · ∧ ν(xd)| dH1(x1) · · · dH1(xd) =

d!
∑

1≤j1<···<jd≤n

|vj1 ∧ · · · ∧ vjd | ,

i.e. the right hand side of (3) is equal to that of (8).
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Step 2. Here we assume that K is the image of an injective Lipschitz curve
γ : [0, L] → R

d, parameterized by arc length (hence |γ′(t)| = 1 for a.e. t). Now
consider a sequence of polygonal curves γn : [0, L] → R

d (i.e. continuous and
piecewise affine maps) such that γn → γ uniformly and γ′

n → γ′ pointwise almost
everywhere, as n tends to infinity. For instance, one can construct γn as follows:

γn(0) = γ(0),

γ′
n(t) =

L

n

∫ (j+1)L/n

jL/n

γ′(s) ds if
jL

n
< t <

(j + 1)L

n
, j = 0, . . . , n− 1.

Note that each γn is a polygonal curve which interpolates γ at the points jL/n.
Uniform convergence is clear, whereas pointwise convergence of derivatives a.e.
follows from the Lebesgue Theorem. In particular, letting Kn = γn([0, L]), we have
Kn → K in Hausdorff distance, hence (see [6])

(9) lim
n→∞

Ld(hull(Kn)) = Ld(hull(K)).

Moreover, as each Kn is a finite union of segments, letting νn(x) denote the unit
tangent vector at x ∈ Kn we have that

Ld(hull(Kn)) ≤
1

(d!)2

∫
Kn

· · ·
∫
Kn

|νn(x1) ∧ · · · ∧ νn(xd)| dH1(x1) · · · dH1(xd)

by Step 1 of this proof. Note that γn need not be injective; however, for all x ∈ Kn

except possibly segment endpoints or crossing points of two segments (i.e. apart
from finitely many exceptions) we clearly have

either νn(x) =
γ′
n(t)

|γ′
n(t)|

or νn(x) = − γ′
n(t)

|γ′
n(t)|

for every t such that γn(t) = x (note that γ′
n(t) �= 0 for a.e. t by construction, since

γ is injective). Therefore, since the integrand function is nonnegative, we have by
the area formula that∫

Kn

· · ·
∫
Kn

|νn(x1) ∧ · · · ∧ νn(xd)| dH1(x1) · · · dH1(xd)

≤
∫ L

0

· · ·
∫ L

0

∣∣∣∣ γ
′
n(t1)

|γ′
n(t1)|

∧ · · · ∧ γ′
n(td)

|γ′
n(td)|

∣∣∣∣× |γ′
n(t1)| × · · · × |γ′

n(td)| dt1 · · · dtd

(in order to have equality, one should insert the cardinality of {γ−1
n (xi)} in each

nested integral in the left hand side, i.e. consider multiplicities).
Now, letting n → ∞, the last integral converges (by dominated convergence,

recalling that γ′
n → γ′ pointwise a.e.) to the corresponding integral relative to γ;

hence, on combining the last two inequalities and passing to the limit, by recalling
(9) we find that

Ld(hull(K)) ≤ 1

(d!)2

∫ L

0

· · ·
∫ L

0

|γ′(t1) ∧ · · · ∧ γ′(td)| dt1 · · · dtd,

where we have used the fact that |γ′(t)| = 1 for a.e. t. On the other hand, since γ
is injective and |γ′(t)| = 1, by the area formula the last integral equals the integral
in (3), which is therefore established when K is the image of an injective Lipschitz
curve.
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Step 3. Using exactly the same technique as in the previous step, one can prove
(3) when K is the union of finitely many Lipschitz curves. More precisely, assume
that, for some m ≥ 2, there exist Lipschitz maps Γi : [0, Li] → K, i = 1, . . . ,m,
such that

(1) Each Γi is injective and parameterized by arc length.
(2) K =

⋃m
i=1 Ki, where Ki = Γi([0, Li]) is the image of Γi.

(3) For every j with 2 ≤ j ≤ m,

Kj ∩
j−1⋃
i=1

Ki = {Γj(0)} .

Intuitively, each simple curve Ki represents a branch of K, and each new branch
Kj is attached to the previous ones by its starting point Γj(0) (and by no other
point). In order to prove (3), it suffices to approximate K by the union of m
polygonal curves, each obtained by interpolating (at uniform nodes on [0, Li]) the
corresponding branch Γi as in Step 2, and pass to the limit. The only issue for
which some care is needed is the concern that if one interpolates each branch of
K by a polygonal curve independently of other branches, then the union of these
m polygonal curves at some stage might fail to be a connected set (and hence one
could not invoke Step 1). On the other hand, one can easily overcome this difficulty
by adding extra interpolation points: indeed, it suffices to require that for all i < j
such that Kj ∩ Ki �= ∅ (this occurs when the branch Kj is attached to Ki), the
(unique by property 3) junction point Γj(0) should be an interpolation point for
the curve Γi. Then the proof is the same as in Step 2, with only notational changes,
and the details are left to the reader.

Step 4. Finally, we consider the general case where K is a connected compact
set such that H1(K) < ∞. Let Ki be as in Lemma 2.2, and set

Cn =

n⋃
i=1

Ki.

Then, by Lemma 2.2, each Cn is a finite union of Lipschitz curves, meeting the
requirement of Step 3 of this proof. Then, by Step 3, we have

Ld(hull(Cn)) ≤ 1

(d!)2

∫
Cn

· · ·
∫
Cn

|νn(x1) ∧ . . . ∧ νn(xd)| dH1(x1) · · · dH1(xd)

≤ 1

(d!)2

∫
K

· · ·
∫
K

|ν(x1) ∧ . . . ∧ ν(xd)| dH1(x1) · · · dH1(xd)

where νn : Cn → Sd−1 and ν : K → Sd−1 are measurable selections of the tangent
vectors (it is well known that, since Cn ⊆ K, νn(x) = ν(x) for a.e. x ∈ Cn; hence
the last inequality follows from the inclusion Cn ⊆ K). Finally, taking the limit as
n → ∞ in the last estimate, the first term tends to Ld(hull(K)) (by statement 4 of
Lemma 2.2), and (3) follows. �

3. The direction measure

In this section we introduce a geometric tool which will be useful in what follows.
Our goal is to associate with every compact connected set K ⊂ R

d of finite length
a finite Borel measure μ on the unit sphere Sd−1, which carries information on how
the tangent vectors are distributed on the unit sphere.
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Definition 3.1. Assume K ⊂ R
d is a compact connected set such that H1(K) <

∞, and let ν : K → Sd−1 be a measurable selection of the unit tangent vector. For
every Borel set E ⊆ Sd−1, let

(10) λ(E) := H1 ({x ∈ K | ν(x) ∈ E})

and

(11) μ(E) =
λ(E) + λ(−E)

2
,

where −E = {x | − x ∈ E} is the symmetric set of E with respect to the origin.
We say that μ is the direction measure of K.

Some remarks are in order. It is clear that the auxiliary map λ defined by (10) is
a Borel measure on the unit sphere such that λ(Sd−1) = H1(K), hence the direction
measure μ also has these properties.

Note that λ depends on (the orientation of) the tangent field ν; to get rid of
this dependence, we define the direction measure μ from λ by symmetrization with
respect to the origin, according to (11). Since, given two measurable selections ν1,
ν2 of the tangent field, we clearly have ν1(x) = ±ν2(x) for H1-a.e. x ∈ K, it is
clear that the measure μ depends only on K and not on ν.

Of course, one could also regard μ as a measure on the real projective space, but
working with a symmetric measure on the sphere, rather than a measure on the
projective space, is more convenient for our purposes here.

Note that (10) is equivalent to the condition that∫
Sd−1

h(y) dλ(y) =

∫
K

h(ν(x)) dH1(x)

for every nonnegative Borel function h. As a consequence, we have∫
Sd−1

h(y) dμ(y) =
1

2

∫
K

(
h(ν(x)) + h(−ν(x))

)
dH1(x)

for every nonnegative Borel function h or, equivalently,

(12)

∫
Sd−1

h(y) dμ(y) =

∫
K

h(ν(x)) dH1(x)

for every nonnegative Borel function h such that h(y) = h(−y).
Using the direction measure, we can rewrite the integral in (3), on the cartesian

product K × · · · × K, as an integral on the cartesian product Sd−1 × · · · × Sd−1,
allowing us to pass from a problem where the unknown is a set to a problem where
the unknown is a measure. Indeed, we have the following:

Proposition 3.2. Assume K ⊂ R
d is a compact connected set such that H1(K) <

∞, and let μ be the direction measure associated to K. Then

(13) Ld(hull(K)) ≤ 1

(d!)2

∫
Sd−1

· · ·
∫
Sd−1

|y1 ∧ · · · ∧ yd| dμ(y1) · · · dμ(yd).

Proof. Let ν : K → Sd−1 be a measurable selection of the tangent vector. Then,
for every d− 1 points x2, . . . , xd in K where ν is defined, the function

h(y) = |y ∧ ν(x2) ∧ · · · ∧ ν(xd)|
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satisfies h(y) = h(−y). Hence from (12) we find that∫
K

· · ·
∫
K

|ν(x1) ∧ · · · ∧ ν(xd)| dH1(x1) · · · dH1(xd)

=

∫
K

· · ·
∫
K

(∫
Sd−1

|y1 ∧ ν(x2) ∧ · · · ∧ ν(xd)| dμ(y1)
)

dH1(x2) · · · dH1(xd).

Proceeding in this way for each of the other nested integrals, one obtains (13) from
(3). �

Now, the proof of Theorem 1.5 is straightforward.

Proof of Theorem 1.5. Let K be as in Theorem 1.5. By homogeneity, we can as-
sume that H1(K) = 1; hence the direction measure μ associated to K is a proba-
bility measure on the unit sphere. Then (6) follows immediately from Proposition
3.2 and (5). �

4. The planar case

In this section we prove Theorem 1.1, thus solving Problem 1.1 in the planar
case. The first step is to characterize all even measures μ which attain (5) when
d = 2.

Theorem 4.1. Let μ be a Borel measure on the unit circle S1. Suppose μ is even,
i.e.

(14) μ(E) = μ(−E) for every Borel set E ⊆ S1.

Then

(15)

∫
S1

∫
S1

|x ∧ y| dμ(x)dμ(y) ≤ 2

π
μ(S1)2,

and equality occurs if and only if μ is a multiple of Lebesgue measure.

Proof. We can identify S1 with the interval [0, 2π) and, using angular variables x
and y, the integral in question can be written as

(16)

∫ 2π

0

∫ 2π

0

| sin(y − x)| dμ(x)dμ(y),

where μ is now regarded as a Borel measure on R, periodic with period π and
satisfying (14). Consider the Fourier coefficients of μ, given by

aj =
1

2π

∫ 2π

0

e−ıjx dμ(x), j ∈ Z.

Since μ is a real measure with period π, we have

(17) a−j = aj , a2j+1 = 0 ∀z ∈ Z.

Similarly, if

(18) | sin t| =
∞∑

j=−∞
bje

ıjt

is the Fourier series of | sin t|, we have

(19) b−j = bj ∈ R, b2j+1 = 0 ∀z ∈ Z
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since | sin t| is even, real, and π-periodic. Note that

(20) a0 =
μ(S1)

2π
, b0 =

1

2π

∫ 2π

0

| sin t| dt = 2

π
.

Then, plugging the Fourier expansion (18) (which converges uniformly) into (16)
and using (17), (19) and (20), we obtain∫ 2π

0

∫ 2π

0

| sin(y − x)| dμ(x)dμ(y) =
∞∑

j=−∞
bj

∫ 2π

0

∫ 2π

0

eıjye−ıjx dμ(x)dμ(y) =

= 4π2
∞∑

j=−∞
bja−jaj = 4π2

∞∑
j=−∞

bj |aj |2 = 4π2b0|a0|2 + 8π2
∞∑
j=1

b2j |a2j |2

=
2

π
μ(S1)2 + 8π2

∞∑
j=1

b2j |a2j |2.

On the other hand, the Fourier expansion (18) is well known, and one has

b2j =
−4

π(4j2 − 1)
∀j ≥ 1.

Therefore, (15) follows since b2j < 0 for j ≥ 1. Moreover, if equality holds in (15),
then necessarily

∞∑
j=1

b2j |a2j |2 = 0,

hence a2j = 0 for every j ≥ 1. This condition, combined with (17), means that
aj = 0 for every j, except possibly for j = 0, i.e. μ is a multiple of Lebesgue
measure. �

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let K ⊂ R
2 be a connected compact set with L = H1(K) <

∞, and let μ be its direction measure. Proposition 3.2 yields the bound

L2(hull(K)) ≤ 1

4

∫
S1

∫
S1

|x ∧ y| dμ(x)dμ(y);

hence, recalling that μ(S1) = H1(K), Theorem 4.1 gives

L2(hull(K)) ≤ H1(K)2

2π
,

which is the desired inequality (2). Now suppose that equality holds for a given
K. Then equality must hold in (15), and from Theorem 4.1 we obtain that μ is a
multiple of Lebesgue measure (in particular, μ has no atoms).

We have to prove that K is a semicircle. First we claim that

(21) K ⊂ ∂ hull(K),

i.e. K is entirely contained in the boundary of its convex hull. For this purpose,
we assume that there exists some x0 ∈ K which is internal to hull(K) and seek a
contradiction.

Since H1(K) is finite, it is well known that for almost every r > 0 the intersection
of K with the boundary of the ball B(x0, r) is made up of finitely many points
(otherwise, upon slicing K with circles centred at x0, by the coarea formula we
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would obtain that H1(K) = ∞, a contradiction). In particular, we can find some

small r > 0 such that B(x0, r) is in the interior of hull(K) and K ∩ ∂B(x0, r) is a

finite set. Now let S denote the connected component of K∩B(x0, r) that contains

x0. Since there are points of K outside B(x0, r) and K is connected, it is clear that
S must touch ∂B(x0, r); hence Γ := S ∩ ∂B(x0, r) is a finite, nonempty set. We
claim that

(22) H1(S) = min
{
H1(C) | C is connected and compact with Γ ∪ {x0} ⊂ C

}
.

Observe that the ≥ sign in place of equality is trivial in (22), since S is connected
and compact and Γ ∪ {x0} ⊂ S. Hence, we assume that

(23) H1(S) > min
{
H1(C) | C is connected and compact with Γ ∪ {x0} ⊂ C

}
and seek a contradiction. Indeed, if we set

K ′ = (K \ S) ∪ C

where C is any set which achieves the minimum in (23), then K ′ is clearly a
connected compact set, and H1(K ′) < H1(K) follows from the assumption that
H1(C) < H1(S). Moreover, hull(K) = hull(K ′) by construction, since we have not
added or removed extreme points. But this is a contradiction, since then we would
have

L2(hull(K ′))

H1(K ′)2
>

L2(hull(K))

H1(K)2
=

1

2π
,

thus violating (2). Hence (23) is ruled out, and (22) is necessarily satisfied.
As a consequence, it follows from (22) and Lemma 4.2 below (applied with

P = Γ ∪ {x0}) that S, in particular, contains at least one segment. Hence the
tangent space to K is constant along that segment, and thus the direction measure
of K has at least one atom. But this is a contradiction, since μ is a multiple of
Lebesgue measure. Hence (21) follows.

Finally, since K ⊂ ∂ hull(K) and K is connected, we obtain that K is homeo-
morphic either to a segment or to the unit circle. In either case K is a continuous
rectifiable curve which maximizes the isoperimetric ratio of the convex hull, hence
K is a semicircle (see [10]). �

The following lemma follows from the far more general results in [11]. How-
ever, for the sake of completeness, we present a short self-contained proof in the
Appendix.

Lemma 4.2. Let P be a finite subset of Rd consisting of at least two points, and
let S ⊂ R

d be any minimal Steiner network containing P , i.e. S is a connected
compact set such that P ⊂ S and

(24) H1(S) = min
{
H1(S) | C is connected and compact with P ⊂ C

}
.

Then S is the union of finitely many segments.

Appendix: Proof of Lemma 4.2

With the Euclidean metric, S is a compact, connected metric space such that
H1(S) < ∞. Then, any two points x, y ∈ S can be joined by an injective Lipschitz
curve with values in S (see e.g. [1], Thm. 4.4.7). Consider two points x, y ∈ P ,
and let γ1 : [0, 1] → S be an injective Lipschitz curve such that

γ1(0) = x, γ1(0) = y.
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Now suppose that, for some k ≥ 1, we have already constructed k injective Lipschitz
curves γi : [0, 1] → S, i = 1, . . . , k, such that

(1) γi(0) ∈ P for every i = 1, . . . , k.
(2) γi([0, 1]) ∩

⋃
j<i γj([0, 1]) consists of the single point γi(1), for every j =

2, . . . , k.

Note that this is initially true for k = 1, since we have already constructed γ1 (and

condition 2 is empty when k = 1). If
⋃k

i=1 γi([0, 1]) covers P , then stop the process,
otherwise take zk ∈ P not covered by any γi and let γk+1 : [0, 1] → S be an injective
Lipschitz curve such that

γk+1(0) = zk, γk+1(1) ∈
k⋃

i=1

γi([0, 1]),

and the length of γk+1 is a minimum among all curves with these properties. Note
that condition 2 is now satisfied also for i = k+1, since otherwise one could shorten
γk+1, which is a contradiction.

Proceeding inductively in this way, the process is stopped in a finite number of
steps, since at every new step we cover at least one more point of P . Hence, we
eventually obtain k curves satisfying conditions 1 and 2 such that

P ⊂ S′ :=
k⋃

i=1

γi([0, 1]) ⊆ S.

Note that S′ is a connected set by condition 2; hence from P ⊂ S′ ⊆ S it follows
that S′ = S, since S is connected and has minimal length. Then we see that S is
the union of k curves satisfying conditions 1 and 2. If we let

V = P ∪
k⋃

i=1

{γi(1)},

we see that, topologically, S is equivalent to the undirected graph (V,E), where
(x, y) belongs to the edge set E if and only if the two points x, y ∈ V are joined by
an arc of curve in S which touches no point of V other than x and y.

Now, if we remove from S an arc of curve corresponding to an edge (x, y) ∈ E
and replace it with the segment from x to y, we reduce the length of S unless
this arc is already a segment. Hence, necessarily, S is made up of finitely many
segments.
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