The word and geodesic problems in free solvable groups
HTML articles powered by AMS MathViewer
- by A. Myasnikov, V. Roman’kov, A. Ushakov and A. Vershik
- Trans. Amer. Math. Soc. 362 (2010), 4655-4682
- DOI: https://doi.org/10.1090/S0002-9947-10-04959-7
- Published electronically: April 14, 2010
- PDF | Request permission
Abstract:
We study the computational complexity of the Word Problem (WP) in free solvable groups $S_{r,d}$, where $r \geq 2$ is the rank and $d \geq 2$ is the solvability class of the group. It is known that the Magnus embedding of $S_{r,d}$ into matrices provides a polynomial time decision algorithm for WP in a fixed group $S_{r,d}$. Unfortunately, the degree of the polynomial grows together with $d$, so the uniform algorithm is not polynomial in $d$. In this paper we show that WP has time complexity $O(r n \log _2 n)$ in $S_{r,2}$, and $O(n^3 r d)$ in $S_{r,d}$ for $d \geq 3$. However, it turns out, that a seemingly close problem of computing the geodesic length of elements in $S_{r,2}$ is $NP$-complete. We prove also that one can compute Fox derivatives of elements from $S_{r,d}$ in time $O(n^3 r d)$; in particular, one can use efficiently the Magnus embedding in computations with free solvable groups. Our approach is based on such classical tools as the Magnus embedding and Fox calculus, as well as on relatively new geometric ideas; in particular, we establish a direct link between Fox derivatives and geometric flows on Cayley graphs.References
- Jorge Almeida, Semidirect products of pseudovarieties from the universal algebraist’s point of view, J. Pure Appl. Algebra 60 (1989), no. 2, 113–128. MR 1020712, DOI 10.1016/0022-4049(89)90124-2
- Zh. Almeĭda and P. Veĭl′, Free profinite semigroups over semidirect products, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1995), 3–31 (Russian); English transl., Russian Math. (Iz. VUZ) 39 (1995), no. 1, 1–27. MR 1391317
- K. Auinger and B. Steinberg, The geometry of profinite graphs with applications to free groups and finite monoids, Trans. Amer. Math. Soc. 356 (2004), no. 2, 805–851. MR 2022720, DOI 10.1090/S0002-9947-03-03358-0
- K. Auinger and B. Steinberg, A constructive version of the Ribes-Zalesskiĭ product theorem, Math. Z. 250 (2005), no. 2, 287–297. MR 2178787, DOI 10.1007/s00209-004-0752-y
- K. Auinger and B. Steinberg, Constructing divisions into power groups, Theoret. Comput. Sci. 341 (2005), no. 1-3, 1–21. MR 2159641, DOI 10.1016/j.tcs.2004.12.027
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Béla Bollobás, Graph theory, Graduate Texts in Mathematics, vol. 63, Springer-Verlag, New York-Berlin, 1979. An introductory course. MR 536131, DOI 10.1007/978-1-4612-9967-7
- Gary Chartrand and Ortrud R. Oellermann, Applied and algorithmic graph theory, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1993. MR 1211413
- David F. Cowan, A class of varieties of inverse semigroups, J. Algebra 141 (1991), no. 1, 115–142. MR 1118319, DOI 10.1016/0021-8693(91)90207-O
- Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Graduate Texts in Mathematics, No. 57, Springer-Verlag, New York-Heidelberg, 1977. Reprint of the 1963 original. MR 0445489, DOI 10.1007/978-1-4612-9935-6
- CRyptography And Groups (CRAG) C++ Library, Available at http://www.acc.stevens. edu/downloads.php.
- Reinhard Diestel, Graph theory, 3rd ed., Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Berlin, 2005. MR 2159259
- Carl Droms, Jacques Lewin, and Herman Servatius, The length of elements in free solvable groups, Proc. Amer. Math. Soc. 119 (1993), no. 1, 27–33. MR 1160298, DOI 10.1090/S0002-9939-1993-1160298-8
- Anna Dyubina, Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups, Internat. Math. Res. Notices 21 (2000), 1097–1101. MR 1800990, DOI 10.1155/S1073792800000544
- M. Elder, A polynomial-time algorithm to compute geodesic length in BS(1,p), in preparation.
- David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. MR 1161694, DOI 10.1201/9781439865699
- Anna Erschler, On drift and entropy growth for random walks on groups, Ann. Probab. 31 (2003), no. 3, 1193–1204. MR 1988468, DOI 10.1214/aop/1055425775
- Alex Eskin, David Fisher, and Kevin Whyte, Quasi-isometries and rigidity of solvable groups, Pure Appl. Math. Q. 3 (2007), no. 4, Special Issue: In honor of Grigory Margulis., 927–947. MR 2402598, DOI 10.4310/PAMQ.2007.v3.n4.a3
- Benson Farb and Lee Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups, Invent. Math. 131 (1998), no. 2, 419–451. With an appendix by Daryl Cooper. MR 1608595, DOI 10.1007/s002220050210
- Benson Farb and Lee Mosher, Quasi-isometric rigidity for the solvable Baumslag-Solitar groups. II, Invent. Math. 137 (1999), no. 3, 613–649. MR 1709862, DOI 10.1007/s002220050337
- Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 53938, DOI 10.2307/1969736
- Ralph H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196–210. MR 62125, DOI 10.2307/1969686
- Ralph H. Fox, Free differential calculus. III. Subgroups, Ann. of Math. (2) 64 (1956), 407–419. MR 95876, DOI 10.2307/1969592
- Ralph H. Fox, Free differential calculus. V. The Alexander matrices re-examined, Ann. of Math. (2) 71 (1960), 408–422. MR 111781, DOI 10.2307/1969936
- M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl. Math. 32 (1977), no. 4, 826–834. MR 443426, DOI 10.1137/0132071
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534, DOI 10.1007/BF02698687
- Mikhael Gromov, Infinite groups as geometric objects, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 385–392. MR 804694
- K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29–62. MR 87652, DOI 10.1112/plms/s3-7.1.29
- Narain Gupta, Free group rings, Contemporary Mathematics, vol. 66, American Mathematical Society, Providence, RI, 1987. MR 895359, DOI 10.1090/conm/066
- M. Hanan, On Steiner’s problem with rectilinear distance, SIAM J. Appl. Math. 14 (1966), 255–265. MR 224500, DOI 10.1137/0114025
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR 704539, DOI 10.1214/aop/1176993497
- M. I. Kargapolov and V. N. Remeslennikov, The conjugacy problem for free solvable groups, Algebra i Logika Sem. 5 (1966), no. 6, 15–25 (Russian). MR 0206080
- Richard M. Karp, Reducibility among combinatorial problems, Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972) Plenum, New York, 1972, pp. 85–103. MR 0378476
- O. G. Harlampovič, A finitely presented solvable group with unsolvable word problem, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 4, 852–873, 928 (Russian). MR 631441
- O. G. Kharlampovich and M. V. Sapir, Algorithmic problems in varieties, Internat. J. Algebra Comput. 5 (1995), no. 4-5, 379–602. MR 1361261, DOI 10.1142/S0218196795000227
- Wilhelm Magnus, On a theorem of Marshall Hall, Ann. of Math. (2) 40 (1939), 764–768. MR 262, DOI 10.2307/1968892
- Stuart W. Margolis and John C. Meakin, $E$-unitary inverse monoids and the Cayley graph of a group presentation, J. Pure Appl. Algebra 58 (1989), no. 1, 45–76. MR 996174, DOI 10.1016/0022-4049(89)90052-2
- S. W. Margolis, J. C. Meakin, and J. B. Stephen, Free objects in certain varieties of inverse semigroups, Canad. J. Math. 42 (1990), no. 6, 1084–1097. MR 1099459, DOI 10.4153/CJM-1990-058-9
- Jane Matthews, The conjugacy problem in wreath products and free metabelian groups, Trans. Amer. Math. Soc. 121 (1966), 329–339. MR 193130, DOI 10.1090/S0002-9947-1966-0193130-8
- John Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968), 447–449. MR 244899
- Lee Mosher, Michah Sageev, and Kevin Whyte, Quasi-actions on trees. I. Bounded valence, Ann. of Math. (2) 158 (2003), no. 1, 115–164. MR 1998479, DOI 10.4007/annals.2003.158.115
- W. D. Munn, Free inverse semigroups, Proc. London Math. Soc. (3) 29 (1974), 385–404. MR 360881, DOI 10.1112/plms/s3-29.3.385
- Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899, DOI 10.1007/978-3-642-88599-0
- Walter Parry, Growth series of some wreath products, Trans. Amer. Math. Soc. 331 (1992), no. 2, 751–759. MR 1062874, DOI 10.1090/S0002-9947-1992-1062874-3
- V. N. Remeslennikov, Certain properties of the Magnus embedding, Algebra i Logika 8 (1969), pp. 72–76.
- V. N. Remeslennikov and N. S. Romanovskiĭ, Algorithmic problems for solvable groups, Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), Studies in Logic and the Foundations of Mathematics, vol. 95, North-Holland, Amsterdam-New York, 1980, pp. 337–346. MR 579951
- V. N. Remeslennikov and V. G. Sokolov, Certain properties of the Magnus imbedding, Algebra i Logika 9 (1970), 566–578 (Russian). MR 0292920
- John Rhodes and Benjamin Steinberg, Profinite semigroups, varieties, expansions and the structure of relatively free profinite semigroups, Internat. J. Algebra Comput. 11 (2001), no. 6, 627–672. MR 1880372, DOI 10.1142/S0218196701000784
- A. L. Shmel$’$kin, Wreath products and group varities, Izvestiya AN SSSR, seriya matematika, 29 (1965), pp. 149–176.
- I. M. Singer and John A. Thorpe, Lecture notes on elementary topology and geometry, Scott, Foresman & Co., Glenview, Ill., 1967. MR 0213982
- A. M. Vershik, Geometry and dynamics on the free solvable groups, preprint. Erwin Schroedinger Institute, Vienna, 1999, pp. 1–16.
- A. M. Vershik, Dynamic theory of growth in groups: entropy, boundaries, examples, Uspekhi Mat. Nauk 55 (2000), no. 4(334), 59–128 (Russian, with Russian summary); English transl., Russian Math. Surveys 55 (2000), no. 4, 667–733. MR 1786730, DOI 10.1070/rm2000v055n04ABEH000314
- A. M. Vershik and S. V. Dobrynin, Geometrical approach to the free solvable groups, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 1243–1260. MR 2197831, DOI 10.1142/S0218196705002657
- B. A. F. Wehrfritz, Two examples of soluble groups that are not conjugacy separable, J. London Math. Soc. (2) 7 (1973), 312–316. MR 338176, DOI 10.1112/jlms/s2-7.2.312
- B. A. F. Wehrfritz, Another example of a soluble group that is not conjugacy separable, J. London Math. Soc. (2) 14 (1976), no. 2, 381–382. MR 422429, DOI 10.1112/jlms/s2-14.2.381
Bibliographic Information
- A. Myasnikov
- Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Canada H3A 2K6
- MR Author ID: 670299
- Email: amiasnikov@gmail.com
- V. Roman’kov
- Affiliation: Department of Mathematics, Omsk State University, Omsk, Russia 644077
- MR Author ID: 344494
- ORCID: 0000-0001-8713-7170
- Email: romankov@math.omsu.omskreg.ru
- A. Ushakov
- Affiliation: Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030
- MR Author ID: 788960
- Email: aushakov@stevens.edu
- A. Vershik
- Affiliation: Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia 191023
- MR Author ID: 178105
- Email: vershik@pdmi.ras.ru
- Received by editor(s): July 11, 2008
- Published electronically: April 14, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 4655-4682
- MSC (2000): Primary 20F16; Secondary 68W30
- DOI: https://doi.org/10.1090/S0002-9947-10-04959-7
- MathSciNet review: 2645045